|
kuing
Posted 2023-4-10 17:01
令 `a=r\cos t`, `b=r\sin t`,则
\[f(x)=r\sin(x+t)-4\sin x-\cos2x+4\sqrt3x,\]
于是
\begin{align*}
f'(x)&=r\cos(x+t)-4\cos x+2\sin2x+4\sqrt3\\
&=r\cos(x+t)-4\cos x(1-\sin x)+4\sqrt3,
\end{align*}
设
\[g(x)=-4\cos x(1-\sin x)+4\sqrt3,\]
由均值易证 `g(x)` 取值范围是 `\bigl[\sqrt3,7\sqrt3\bigr]`,那么如果 `\abs r<\sqrt3`,则 `f'(x)` 显然恒正,不满足题意。
而当 `r=\sqrt3` 时,设 `g(x_0)=\sqrt3`,则取适当的 `t` 使 `\cos(x_0+t)=-1` 便能满足 `f'(x_0)=0`。
综上所述,`\abs r` 的最小值为 `\sqrt3`,即 `a^2+b^2=r^2` 的最小值为 `3`。 |
|