Forgot password?
 Register account
View 350|Reply 7

[几何] $m$维仿射子空间在所有$m$维坐标子空间投影度量平方...

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-5-14 20:26 |Read mode
Last edited by hbghlyj 2023-5-15 11:41Sets of m-dimensional objects in n-dimensional space
$\mathbb R^n$中一个$m$($m≤n$)维仿射子空间$s$的度量平方等于它在所有$m$维坐标子空间上投影$p_i$的度量平方之和。
$$ \mu _m(s)^{2}=\sum _{i=1}^{x}\mathbf \mu_m(p_i) ^2 $$
其中:
$ \mu _{m} $是$m$维度量(一维长度,二维面积,三维体积等)。
$ s $是$\mathbb R^n$中一个$m$维仿射子空间。
$ p_i$是$s$在所有$m$维坐标子空间上的投影。
$ x $是$\mathbb R^n$中的$m$维坐标子空间数:$ {\displaystyle x={\binom {n}{m}}={\frac {n!}{m!(n-m)!}}} $

Rate

Number of participants 1威望 -1 Collapse Reason
kuing -1 差评!

View Rating Log

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-5-14 22:49
Trirectangular tetrahedron
MSE
$$\Set{(x,y,z)|x>0∧y>0∧z>0∧\frac xa+\frac yb+\frac zc<1}$$
体积$V={\frac {abc}{6}}.$
高${\frac {1}{h^{2}}}={\frac {1}{a^{2}}}+{\frac {1}{b^{2}}}+{\frac {1}{c^{2}}}.$
底面$T_{0}={\frac {abc}{2h}}.$
侧面$T_1,T_2,T_3$
De Gua's theorem $T_{0}^{2}=T_{1}^{2}+T_{2}^{2}+T_{3}^{2}.$

Nrich: Pythagoras for a Tetrahedron Age 16 to 18
r/math
by ITBlueMagma • 4 yr. ago

In a tetrahedron that has a right angled vertex (all three edges from that vertex at 90 degree angle from one another), the square of the area of the opposite face is equal to the sum of the square of all three other face's area.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2023-5-14 23:38
用 $a$, $b$, $c$, $d$ 表示面积真不习惯😅

凭直觉,这个引理可能不成立。

记 `AB=x`, `AC=y`, `AD=z`, `\angle CAD=t`, `\angle BAD=u`, `\angle BAC=v`,则 `2a=yz\sin t` 等。

考查 `9V^2=2abc` 这个式子,当那三个夹角固定时,`V` 与 `xyz` 成正比,`abc` 与 `(xyz)^2` 成正比,可见 `V^2/(abc)` 不含 `x`, `y`, `z`,也就是 `9V^2=2abc` 将会等价于一个与 `x`, `y`, `z` 无关的等式。

而 $a^2+b^2+c^2=d^2$ 从直觉上看就应该会与 `x`, `y`, `z` 有关,不信你可以试试用余弦定理及面积公式之类的代入算算。

============
卧槽,回完才发现 1# 完全换了内容,白写了……
尼玛,直角四面体的这些结论谁还用你说?? 换也换点有意义的啊,差评威望-1

注:原 1# 的内容大致为:不知谁提出引理:若四面体四个面的面积满足 $a^2+b^2+c^2=d^2$,则体积满足 `9V^2=2abc`。

Comment

我也是发现不成立😥所以才换掉的  Posted 2023-5-15 02:10
又重写了🆗把原来内容放在2#了  Posted 2023-5-15 02:31
用自己的话重述一下: 保持AB,AC,AD的夹角不变,改变它们的长度,使其乘积不变,则$V^2/(abc)$不变但不能保持$a^2+b^2+c^2=d^2$  Posted 2023-5-15 02:36

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-5-15 02:37
当$m=1$时,线段$AB$在各坐标轴的投影,是它的分量
$$|AB|^2=\sum|A_iB_i|^2$$
当$m=2,n=3$时,是2#的直角四面体De Gua's theorem
jstor.org/stable/2319528
1 Generalized Pythagorean Theorem, D. R. Conant and W. A. Beyer-2_1.png
2 Generalized Pythagorean Theorem, D. R. Conant and W. A. Beyer-3_1.png
3 Generalized Pythagorean Theorem, D. R. Conant and W. A. Beyer-4_1.png
4 Generalized Pythagorean Theorem, D. R. Conant and W. A. Beyer-5_1.png

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-5-15 05:19

volume of a parallelepiped

Last edited by hbghlyj 2023-5-15 11:42
hbghlyj 发表于 2023-5-14 19:37
Let {ai}1⩽i⩽m, where m ⩽ n, be a set in Rn. Let A be the matrix whose columns are the coordinates of a1,...,am with respect to an orthonormal basis X. The volume Vm of the parallelepiped spanned by {ai} is given by √(det AtA), (Birkhoff and MacLane [4]).
A survey of modern algebra P.329
§10.3 Determinants as Volumes
Screenshot 2023-05-14 at 22-23-11 A Survey of Modern Algebra - (Akp Classics) Ga.png Screenshot 2023-05-14 at 22-23-30 A Survey of Modern Algebra - (Akp Classics) Ga.png

Mobile version|Discuz Math Forum

2025-5-31 11:05 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit