Forgot password?
 Register account
View 318|Reply 4

[函数] 三角,多选

[Copy link]

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

guanmo1 Posted 2024-2-18 23:05 |Read mode
Last edited by hbghlyj 2025-3-19 08:26设 $\alpha \in\left(0, \frac{\pi}{2}\right), \beta \in\left(\frac{\pi}{2}, \pi\right)$ ,且 $\tan \alpha=\sin (\alpha+\beta)$ ,则
A. $\tan \alpha+\tan (\alpha+\beta)<0$
B. $\cos \alpha+\cos (\alpha+\beta)<0$
C. $\sin \frac{\beta}{2}+\sin \left(\alpha-\frac{\pi}{2}\right)>0$
D. $\sin \frac{\beta}{2}+\cos (\alpha+\beta)>0$

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2024-2-19 00:52
Last edited by 睡神 2024-2-19 11:17这个没什么难度,就让我练一下代码吧~

易知$ \alpha+\beta\in (\dfrac{\pi}{2},\pi)$

$\tan\alpha+\tan(\alpha+\beta)=\sin(\alpha+\beta)+\tan(\alpha+\beta)$

令$f(x)=\sin x+\tan x,x\in(\dfrac{\pi}{2},\pi)$

$f'(x)=\cos x+\dfrac{1}{\cos^{2} x}=\dfrac{1+\cos^{3} x}{\cos^{2} x}>0$

$f(x)$在$(\dfrac{\pi}{2},\pi)$上单调递增

所以$f(x)<f(\pi)=0$,即A得证

由$\tan\alpha<-\tan(\alpha+\beta)=\tan[\pi-(\alpha+\beta)]$得$\alpha<\pi-(\alpha+\beta)$

所以$\cos(\alpha)>\cos[\pi-(\alpha+\beta)]=-\cos(\alpha+\beta)$,即B错误

由$2\alpha+\beta<\pi$得$\alpha-\dfrac{\pi}{2}<-\dfrac{\beta}{2}$

所以$\sin(\alpha-\dfrac{\pi}{2})<\sin(-\dfrac{\beta}{2})=-\sin\dfrac{\beta}{2}$,即C错误

由$2\alpha+\beta<\pi$得$\alpha+\beta<\dfrac{\pi}{2}+\dfrac{\beta}{2}$

所以$\cos(\alpha+\beta)>\cos(\dfrac{\pi}{2}+\dfrac{\beta}{2})=-\sin\dfrac{\beta}{2}$,即D得证
除了不懂,就是装懂

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2024-2-19 01:32
睡神 发表于 2024-2-19 00:52
这个没什么难度,就让我练一下代码吧~

易知$ \alpha+\beta\in (\dfrac{\pi}{2},\pi)$
上次还说不会代码,学得挺快的嘛☺️


PS、导数直接打 f'(x) 就行,不需要 f^{'}(x)

Comment

毕竟以前学过少少哇😂能打出来就行了,要要求低点😁  Posted 2024-2-19 09:52

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2024-2-19 20:29
题:若 $\alpha$ 为锐角,$\beta$ 为钝角且 $\tan\alpha=\sin(\alpha+\beta)$,则有
    A. $\tan\alpha+\tan(\alpha+\beta)<0$
    D $\sin\frac\beta2+\cos(\alpha+\beta)>0$

直接从 A 选项开始,因为可化为同角
\begin{gather*}\tan\alpha+\tan(\alpha+\beta)<0\\\iff \sin(\alpha+\beta)+\tan(\alpha+\beta)<0\\\iff \sin(\alpha+\beta)(1+\cos(\alpha+\beta))>0,\end{gather*}
此式成立,即 A 项正确.

进一步\[\tan(\alpha+\beta)<\tan(\pi-\alpha)\Rightarrow 2\alpha+\beta<\pi,\]
随后就好办了
isee=freeMaths@知乎

Mobile version|Discuz Math Forum

2025-5-31 10:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit