Forgot password?
 Register account
View 230|Reply 1

[几何] 立体几何

[Copy link]

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

hjfmhh Posted 2024-4-26 07:44 |Read mode
Last edited by hbghlyj 2025-4-13 10:57平面 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 两两平行,且 $\alpha_i$ 与 $\alpha_{i+1}$ 的距离均为 $d, i=1,2,3$ .已知正方体 $A B C D{-}A_1 B_1 C_1 D_1$ 的棱长为 1,且 $A \in \alpha_1, B_1 \in \alpha_2, C \in \alpha_3, D_1 \in \alpha_4$.
(1)求 $d$;
(2)求 $\alpha_1$ 与平面 $A_1 B D$ 夹角的余弦值.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2024-4-26 19:18
(1)设平面 `\alpha_1` 的法向量为 `\bm n`,记 `\bm n` 与直线 `AA_1`, `AB`, `AD` 的夹角分别为 `\theta_1`, `\theta_2`, `\theta_3`,则有
\[\cos^2\theta_1+\cos^2\theta_2+\cos^2\theta_3=1,\]
点 `A_1`, `B`, `D` 到平面 `\alpha_1` 的距离分别为 `\cos\theta_1`, `\cos\theta_2`, `\cos\theta_3`,则点 `B_1`, `C`, `D_1` 到平面 `\alpha_1` 的距离分别为 `\cos\theta_1+\cos\theta_2`, `\cos\theta_2+\cos\theta_3`, `\cos\theta_1+\cos\theta_3`,依题意有
\[\cos\theta_1+\cos\theta_2=d,~\cos\theta_2+\cos\theta_3=2d,~\cos\theta_1+\cos\theta_3=3d,\]
得到
\[\cos\theta_1=d,~\cos\theta_2=0,~\cos\theta_3=2d,\]
代入上面即得 `d=1/\sqrt5`。

(2)由(1)的过程知实际上平面 `\alpha_1` 过 `AB`,且……

吃饭了,懒得写了,略吧……

Mobile version|Discuz Math Forum

2025-5-31 11:21 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit