设截面面积为 $A(z) = a + b z + c z^2$,$0\le z\le h$,$A(0) = B_1$,$A(h) = B_2$
体积 $V = \int_0^h A(z) \rmd z = a h + \frac{b}{2} h^2 + \frac{c}{3} h^3$
证明\eqref{1}:代入 $M = A(\frac{h}{2}) = a + \frac{b h}{2} + \frac{c h^2}{4}$
\[
\RHS= \frac{h}{6} \left( a + 4\left(a + \frac{b h}{2} + \frac{c h^2}{4}\right) + (a + b h + c h^2) \right) = \frac{h}{6} (6a + 3 b h + 2 c h^2) = a h + \frac{b}{2} h^2 + \frac{c}{3} h^3
\]
证明\eqref{2}:代入 $S = A(\frac{2h}{3}) = a + \frac{2 b h}{3} + \frac{4 c h^2}{9}$
\[
\RHS = \frac{h}{4} \left( a + 3\left(a + \frac{2 b h}{3} + \frac{4 c h^2}{9}\right) \right) = \frac{h}{4} (4a + 2 b h + \frac{4}{3} c h^2) = a h + \frac{b}{2} h^2 + \frac{c}{3} h^3
\]