Forgot password
 Register account
View 32|Reply 2

[几何] 李--张包络多边形定理(奇数边情况)

[Copy link]

56

Threads

157

Posts

2

Reputation

Show all posts

1+1=? posted 2025-8-3 13:46 |Read mode
Last edited by 1+1=? 2025-8-3 17:42给定一条非退化二次曲线$g$及$2n(n\geqslant1)$条任意代数曲线$f_{n}$,向$g$上一点$P_{1}$引$f_{1}$的一条切线$l_{1}$交$g$于点$P_{2}$,$l_{1}$关于$f_{1}$的切点为$Q_{1}$,再向点$P_{2}$引$f_{2}$的一条切线$l_{2}$交$g$于点$P_{3}$,$l_{2}$关于$f_{2}$的切点为$Q_{2}$,重复此过程直至得到点$P_{2n+1}$,则直线$P_{1}P_{2n+1}$包络一条代数曲线$f_{2n+1}$,又设$P_{1}P_{2n+1}$关于$f_{2n+1}$的切点为$Q_{2n+1}$,则直线集${P_{i}Q_{n+i}(1\leqslant i \leqslant n+1)}$相交于一点.

56

Threads

157

Posts

2

Reputation

Show all posts

original poster 1+1=? posted 2025-8-3 23:38
先证明$n=1$的命题,
等价于:圆内接三角形$ABC$的两边分别与两条任意代数曲线相切,当$\triangle ABC$运动时,则第三条边包络另一条代数曲线,且第三边包络点与另外两边上的切点这三个点构成$\triangle ABC$的Ceva三角形.

56

Threads

157

Posts

2

Reputation

Show all posts

original poster 1+1=? posted 2025-8-3 19:26
Last edited by 1+1=? 2025-8-3 23:20
1+1=? 发表于 2025-8-3 13:54
先证明$n=1$的命题,
等价于:圆内接三角形$ABC$的两边分别与两条任意代数曲线相切,当$\triangle ABC$运动 ...
如图所示,向$B$点作$f_1$的切线交$g$于$A$点,将该过程考虑为$B$到点$A$的位置映射$\overrightarrow{φ_{1}}$,$\overrightarrow{φ_{1}}$由$g,f_1$决定,由解析几何知识易知:若$g,f_1$是代数曲线则位置映射$\overrightarrow{φ_{1}}$的分量是代数函数,设$A  \mapsto C$的映射为$\overrightarrow{φ_{2}}$则有$B \xrightarrow{\overrightarrow{φ_{1}}} A \xrightarrow{\overrightarrow{φ_{2}}}C  \Longleftrightarrow  B \xrightarrow{\overrightarrow{φ_{1}}◦\overrightarrow{φ_{2}}} C $.
由于$\overrightarrow{φ_{1}},\overrightarrow{φ_{2}}$的分量是代数函数故$\overrightarrow{φ_{1}}◦\overrightarrow{φ_{2}}$的分量也是代数函数,即$BC$包络由$\overrightarrow{φ_{1}}◦\overrightarrow{φ_{2}}$决定的代数曲线.
于是原命题转化为:
设直线$ \begin{cases} AB \\ AC \\ BC \end{cases}$关于时间$t$的位置函数为$ \begin{cases} {\overrightarrow{u_{1}(t)}= \overrightarrow{B(t)} \times (\overrightarrow{φ_{1}} ◦ \overrightarrow{B(t)})} \\ {\overrightarrow{u_{2}(t)} =\overrightarrow{A(t)} \times (\overrightarrow{φ_{2}} ◦ \overrightarrow{A(t)})}\\ {\overrightarrow{u_{3}(t)}=\overrightarrow{B(t)} \times (\overrightarrow{φ_{1}} ◦ \overrightarrow{φ_{2}}◦ \overrightarrow{A(t)})} \end{cases}$
则包络点$D$由运动学知识可以定义为$D=\lim_{\Delta t\to0}\overrightarrow{u_{1}(t)}\times\overrightarrow{u_{2}(t+\Delta t)}$
仿此定义另外两点$E,F$,注意到代数曲线的光滑连续性,即$\overrightarrow{φ_{1}},\overrightarrow{φ_{2}},\overrightarrow{φ_{3}}=\overrightarrow{φ_{1}} ◦ \overrightarrow{φ_{2}}$是连续的,故$\overrightarrow{u_{1}(t)},\overrightarrow{u_{2}(t)},\overrightarrow{u_{3}(t)}$也是连续的,于是设$t$时刻的包络三角形为$\triangle ABC$,$t+\Delta t $时刻的包络三角形为$\triangle A_1B_1C_1$,则必有$\Delta t \rightarrow 0 $时,$\begin{cases} A_1\rightarrow A \\ B_1\rightarrow B \\ C_1\rightarrow C \end{cases}$
如图所示,命题进一步转化为:证明$\Delta t \rightarrow 0 $时,$AF,BE,DC$三线共点,又设$\triangle ABC$与$\triangle A_1B_1C_1$的另外三个交点为$G,H,I$,由帕斯卡定理,$g$上的6点$A,B,C,A_1,B_1,C_1$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-8-4 18:48 GMT+8

Powered by Discuz!

Processed in 0.013969 seconds, 41 queries