|
回复 1# lrh2006
利用空间向量做:
以$D$为原点建立空间直角坐标系,各点的坐标为:
$B(1,1,0)$,$C_1(0,1,1)$,$E\Big(1,1,\dfrac 12\Big)$,$M(t,t,t),t\in[0,1]$.
$\vv{BC_1}=(-1,0,1)$,$\vv{EM}=\Big(t-1,t-1,t-\dfrac 12\Big)$,
$\vv{BC_1}\cdot \vv{EM}=\dfrac 12$
$|\vv{BC_1}|=\sqrt{2}$,$|\vv{EM}|=\sqrt{(t-1)^2+(t-1)^2+\Big(t-\dfrac 12\Big)^2}=\sqrt{3t^2-5t+\dfrac 94}$,
设$BC_1$与$EM$所成的角为$\theta$,
则\begin{align*}
\cos\theta & =\dfrac{\vv{BC_1}\cdot\vv{EM}}{|\vv{BC_1}||\vv{EM}|}\\
& =\dfrac{\sqrt{2}}{4\sqrt{3t^2-5t+\dfrac 94}}\\
& =\dfrac{\sqrt{2}}{4\sqrt{3\Big(t-\dfrac 56\Big)^2+\dfrac 16}}
\end{align*}
当$t=\dfrac 56$时,$(\cos\theta)_{\max}=\dfrac{\sqrt 3}{2}$;
当$t=0$时,$(\cos\theta)_{\min}=\dfrac{\sqrt 2}{6}$.
因此,两异面直线所成角的余弦值的取值范围为$\Big[\dfrac{\sqrt 2}{6},\dfrac{\sqrt 3}{2}\Big]$. |
|