Forgot password?
 Register account
View 1916|Reply 6

[几何] 立体几何,取值范围

[Copy link]

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

lrh2006 Posted 2017-1-11 23:26 |Read mode
这种题目总是不太清楚,求指教,谢谢

在正方体 $ABCD$-$A_1B_1C_1D_1$ 中,$E$ 是 $B_1B$ 中点,$M$ 是线段 $B_1D$ 上的动点,则异面直线 $EM$ 与 $BC_1$ 所成角余弦值的取值范围是____

2

Threads

8

Posts

75

Credits

Credits
75

Show all posts

xugaosong Posted 2017-1-12 00:45
回复 1# lrh2006

利用空间向量做:
以$D$为原点建立空间直角坐标系,各点的坐标为:
$B(1,1,0)$,$C_1(0,1,1)$,$E\Big(1,1,\dfrac 12\Big)$,$M(t,t,t),t\in[0,1]$.
$\vv{BC_1}=(-1,0,1)$,$\vv{EM}=\Big(t-1,t-1,t-\dfrac 12\Big)$,
$\vv{BC_1}\cdot \vv{EM}=\dfrac 12$
$|\vv{BC_1}|=\sqrt{2}$,$|\vv{EM}|=\sqrt{(t-1)^2+(t-1)^2+\Big(t-\dfrac 12\Big)^2}=\sqrt{3t^2-5t+\dfrac 94}$,
设$BC_1$与$EM$所成的角为$\theta$,
则\begin{align*}
\cos\theta & =\dfrac{\vv{BC_1}\cdot\vv{EM}}{|\vv{BC_1}||\vv{EM}|}\\
               & =\dfrac{\sqrt{2}}{4\sqrt{3t^2-5t+\dfrac 94}}\\
               & =\dfrac{\sqrt{2}}{4\sqrt{3\Big(t-\dfrac 56\Big)^2+\dfrac 16}}
\end{align*}
当$t=\dfrac 56$时,$(\cos\theta)_{\max}=\dfrac{\sqrt 3}{2}$;
当$t=0$时,$(\cos\theta)_{\min}=\dfrac{\sqrt 2}{6}$.

因此,两异面直线所成角的余弦值的取值范围为$\Big[\dfrac{\sqrt 2}{6},\dfrac{\sqrt 3}{2}\Big]$.

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

 Author| lrh2006 Posted 2017-1-12 10:41
回复 2# xugaosong


    嗯,懂了,谢谢。不用向量,纯几何方法,能做吗?

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2017-1-15 01:19
2001.png

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2017-1-15 09:00

    哎哟,难得冒个泡。。。。

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2017-1-15 14:44
传统方法肯定是很牛的!

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

 Author| lrh2006 Posted 2017-1-15 18:02
回复 4# 乌贼


    厉害!我看明白了,谢谢你哦

Mobile version|Discuz Math Forum

2025-5-31 10:31 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit