|
试试转化为向量的代数办法
设1楼 α,β平面的法向量依次设为$\vv{n}=(1,0,0),\vv{m}=(\cos 50 \du ,\sin 50 \du,0)$,
过点P的符合题意的直线方向向量$\vv{p}=(\cos x,\sin x\cos y,\sin x \sin y)$.
那么有$\abs{\cos<\vv{n},\vv{p}>}=\cos 65\du,\abs{\cos<\vv{m},\vv{p}>}=\cos 65\du$.
得到$\cos x=±\cos 65 \du , \cos 50 \du\cos x +\sin 50\du\sin x \cos y=±\cos 65\du -----(1)$
1.当$\cos x=\cos 65\du ,\sin x=\sin 65\du$时,代入(1)得
$\cos 50 \du\cos 65\du +\sin 50\du\sin 65\du \cos y=\cos 65\du,\cos y=\frac{\sin^2 25\du}{\cos^2 25\du}$.
$\cos 50 \du\cos 65\du +\sin 50\du\sin 65\du \cos y=-\cos 65\du,\cos y=-1$.
$\vv{p}=(\cos 65\du,\frac{\sin^2 25\du}{\cos 25\du},±\frac{\sqrt{\cos 50 \du}}{\cos 25\du})$,或$\vv{p}=(\cos 65\du,-\sin 65\du,0)$-----(2)
2.当$\cos x=\cos 65\du ,\sin x=-\sin 65\du$时,
$\cos 50 \du\cos 65\du -\sin 50\du\sin 65\du \cos y=\cos 65\du,\cos y=-\frac{\sin^2 25\du}{\cos^2 25\du}$.
$\cos 50 \du\cos 65\du -\sin 50\du\sin 65\du \cos y=-\cos 65\du,\cos y=1$.
得到$\vv{p}$与(2)相同.
3.当$\cos x=-\cos 65\du ,\sin x=\sin 65\du$时,
$-\cos 50 \du\cos 65 \du+\sin 50\du\sin 65\du\cos y=\cos 65\du, \cos y=1$.
$-\cos 50 \du\cos 65\du +\sin 50\du\sin 65\du \cos y=-\cos 65\du,\cos y=-\frac{\sin^2 25\du}{\cos^2 25\du}$.
得到$\vv{p}=(-\cos 65\du,-\frac{\sin^2 25\du}{\cos 25\du},±\frac{\sqrt{\cos 50 \du}}{\cos 25\du})$或$\vv{p}=(-\cos 65\du,\sin 65\du,0)$与(2)互为相反向量.
4.当$\cos x=-\cos 65\du ,\sin x=-\sin 65\du$时,
$-\cos 50 \du\cos 65\du -\sin 50\du\sin 65\du \cos y=\cos 65\du,\cos y=-1$.
$-\cos 50 \du\cos 65\du -\sin 50\du\sin 65\du \cos y=-\cos 65\du,\cos y=\frac{\sin^2 25\du}{\cos^2 25\du}.$
得到的$\vv{p}$同上一条.
综上所得,有三条直线符合要求. 错了n次,终于修改好了.本着“宁可错杀,不可放过”,讨论了4条,结果看,只需要考虑一条. |
|