Forgot password
 Register account
View 358|Reply 2

[函数] $\sin x-\sin y=1$,求$\cos x+\cos y$的取值范围.

[Copy link]

68

Threads

406

Posts

3

Reputation

Show all posts

Tesla35 posted 2022-2-3 14:40 |Read mode
设$x,y\in[-\frac{\pi}{2},\frac{\pi}{2}]$满足$\sin x-\sin y=1$,求$\cos x+\cos y$的取值范围.

$z=\cos x+\cos y$,则$z^2+1^2=(\cos x+\cos y)^2+(\sin x-\sin y)^2=2+2\cos(x+y)$,所以
$z^2=1+2\cos(x+y)\leqslant3$,当$x=\frac{\pi}{6},y=-\frac{\pi}{6}$时取到最大值,$z\leqslant\sqrt{3}$.

最小值怎么求?

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2022-2-3 16:01
由条件易知 `-\pi/2\leqslant y\leqslant0\leqslant x\leqslant\pi/2`,由此可得 `\cos x+\sin x\geqslant1` 且 `\cos y-\sin y\geqslant1`,相加即得 `\cos x+\cos y\geqslant1`,当 `(x,y)=(\pi/2,0)` 或 `(x,y)=(0,-\pi/2)`取等。

68

Threads

406

Posts

3

Reputation

Show all posts

original poster Tesla35 posted 2022-2-3 16:23
回复 2# kuing

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:15 GMT+8

Powered by Discuz!

Processed in 0.018663 seconds, 43 queries