Forgot password?
 Register account
View 324|Reply 9

[函数] 求余弦的连乘值

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2022-5-7 20:43 |Read mode
如何求下面余弦的连乘值?
$\cos\frac{\pi}{n}\cos\frac{2\pi}{n}\cdots \cos\frac{(n-1)\pi}{n}$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-5-7 21:07
不是讨论过了吗:forum.php?mod=viewthread&tid=7157

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2022-5-7 21:30
回复 2# kuing
哦,原来两年前还是我问过这类问题的
这两天我又弄了一下,原贴其它的都搞懂了(其中还用到了你的一个结论forum.php?mod=viewthread&tid=3996#pid17381),
但1#这个搞不来呀

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

abababa Posted 2022-5-7 22:05
回复 1# lemondian

也是根据复数的根,$z^{2n}-1=0$的根是$z_k=e^{\frac{2k\pi i}{2n}}=e^{\frac{k\pi i}{n}}$,所以
\[z^{2n}-1=\prod_{k=1}^{2n}(z-z_k)\]

因为$z_k,z_{2n-k}$是互为共轭的并且乘积是$1$,和为$e^{\frac{k\pi i}{n}}+e^{-\frac{k\pi i}{n}}=2\cos\frac{k\pi}{n}$,而$(z-e^{\frac{n\pi i}{n}})(z-e^{\frac{2n\pi i}{n}})=z^2-1$,所以上式即
\[z^{2n}-1=(z^2-1)\prod_{k=1}^{n-1}(z-z_k)(z-\bar{z}_k)=(z^2-1)\prod_{k=1}^{n-1}(z^2-2\cos\frac{k\pi}{n}z+1)\]

只要在上式中右边的乘积因子里消去那个$z^2+1$就行了,取$z=i$即可,代入上式就得到
\[(-1)^n-1=-2\cdot(-2i)^{n-1}\prod_{k=1}^{n-1}\cos\frac{k\pi}{n}\]
就能算出来了。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-5-7 22:32
回复 4# abababa

挺好嘀方法

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

abababa Posted 2022-5-8 08:16
回复 5# kuing

最近总弄$e^{k\pi i}$这样的东西,一下就想到了。一开始是用的$z^n-1$的根,发现只能乘到一半,然后用了$z^{2n}-1$,就全乘到了。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-5-8 14:36
回复 6# abababa

其实乘到一半就够了,毕竟 `\cos(\pi/n)=-\cos((n-1)\pi/n)` 等。

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2022-5-9 21:01
Last edited by 战巡 2022-5-10 03:08回复 1# lemondian


出个大招好了...

\[\cos(\frac{k\pi}{n})=\sin(\frac{\pi}{2}-\frac{k\pi}{n})=\sin(\pi(\frac{1}{2}-\frac{k}{n}))\]
按照余元公式
\[\frac{\pi}{\cos(\frac{k\pi}{n})}=\frac{\pi}{\sin(\pi(\frac{1}{2}-\frac{k}{n}))}=\Gamma(\frac{1}{2}-\frac{k}{n})\Gamma(\frac{1}{2}+\frac{k}{n})=\Gamma(-\frac{1}{2}+\frac{n-k}{n})\Gamma(\frac{1}{2}+\frac{k}{n})\]
那么
\[\prod_{k=1}^{n-1}\frac{\pi}{\cos(\frac{k\pi}{n})}=\prod_{k=1}^{n-1}\Gamma(-\frac{1}{2}+\frac{n-k}{n})\Gamma(\frac{1}{2}+\frac{k}{n})\]
令$n-k=j$,就有
\[=\prod_{j=1}^{n-1}\Gamma(-\frac{1}{2}+\frac{j}{n})\prod_{k=1}^{n-1}\Gamma(\frac{1}{2}+\frac{k}{n})\]

注意按照高斯乘积公式,会有
\[\prod_{k=0}^{n-1}\Gamma(z+\frac{k}{n})=(2\pi)^{\frac{n-1}{2}}n^{\frac{1-2nz}{2}}\Gamma(nz)\]
那么就有
\[\Gamma(-\frac{1}{2})\prod_{j=1}^{n-1}\Gamma(-\frac{1}{2}+\frac{j}{n})=(2\pi)^{\frac{n-1}{2}}n^{\frac{1+n}{2}}\Gamma(-\frac{n}{2})\]
以及
\[\Gamma(\frac{1}{2})\prod_{k=1}^{n-1}\Gamma(\frac{1}{2}+\frac{k}{n})=(2\pi)^{\frac{n-1}{2}}n^{\frac{1-n}{2}}\Gamma(\frac{n}{2})\]
于是
\[\Gamma(-\frac{1}{2})\Gamma(\frac{1}{2})\prod_{j=1}^{n-1}\Gamma(-\frac{1}{2}+\frac{j}{n})\prod_{k=1}^{n-1}\Gamma(\frac{1}{2}+\frac{k}{n})=(2\pi)^{n-1}n\Gamma(-\frac{n}{2})\Gamma(\frac{n}{2})\]
这里面
\[n\Gamma(-\frac{n}{2})\Gamma(\frac{n}{2})=-2\Gamma(1-\frac{n}{2})\Gamma(\frac{n}{2})=-\frac{2\pi}{\sin(\frac{n\pi}{2})}\]
\[\Gamma(-\frac{1}{2})=-2\sqrt{\pi},\Gamma(\frac{1}{2})=\sqrt{\pi}\]
于是
\[\prod_{j=1}^{n-1}\Gamma(-\frac{1}{2}+\frac{j}{n})\prod_{k=1}^{n-1}\Gamma(\frac{1}{2}+\frac{k}{n})=\frac{(2\pi)^{n-1}}{\sin(\frac{n\pi}{2})}\]
最后就有
\[\pi^{n-1}\prod_{k=1}^{n-1}\frac{1}{\cos(\frac{k\pi}{n})}=\prod_{j=1}^{n-1}\Gamma(-\frac{1}{2}+\frac{j}{n})\prod_{k=1}^{n-1}\Gamma(\frac{1}{2}+\frac{k}{n})=\frac{(2\pi)^{n-1}}{\sin(\frac{n\pi}{2})}\]
\[\prod_{k=1}^n\cos(\frac{k\pi}{n})=\frac{\sin(\frac{n\pi}{2})}{2^{n-1}}\]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2022-5-10 16:23
回复 8# 战巡
果然是大招,完全看不懂!

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2022-5-10 16:24
回复 4# abababa
谢谢!

Mobile version|Discuz Math Forum

2025-5-31 10:39 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit