|
战巡
Posted 2022-5-9 21:01
Last edited by 战巡 2022-5-10 03:08回复 1# lemondian
出个大招好了...
\[\cos(\frac{k\pi}{n})=\sin(\frac{\pi}{2}-\frac{k\pi}{n})=\sin(\pi(\frac{1}{2}-\frac{k}{n}))\]
按照余元公式
\[\frac{\pi}{\cos(\frac{k\pi}{n})}=\frac{\pi}{\sin(\pi(\frac{1}{2}-\frac{k}{n}))}=\Gamma(\frac{1}{2}-\frac{k}{n})\Gamma(\frac{1}{2}+\frac{k}{n})=\Gamma(-\frac{1}{2}+\frac{n-k}{n})\Gamma(\frac{1}{2}+\frac{k}{n})\]
那么
\[\prod_{k=1}^{n-1}\frac{\pi}{\cos(\frac{k\pi}{n})}=\prod_{k=1}^{n-1}\Gamma(-\frac{1}{2}+\frac{n-k}{n})\Gamma(\frac{1}{2}+\frac{k}{n})\]
令$n-k=j$,就有
\[=\prod_{j=1}^{n-1}\Gamma(-\frac{1}{2}+\frac{j}{n})\prod_{k=1}^{n-1}\Gamma(\frac{1}{2}+\frac{k}{n})\]
注意按照高斯乘积公式,会有
\[\prod_{k=0}^{n-1}\Gamma(z+\frac{k}{n})=(2\pi)^{\frac{n-1}{2}}n^{\frac{1-2nz}{2}}\Gamma(nz)\]
那么就有
\[\Gamma(-\frac{1}{2})\prod_{j=1}^{n-1}\Gamma(-\frac{1}{2}+\frac{j}{n})=(2\pi)^{\frac{n-1}{2}}n^{\frac{1+n}{2}}\Gamma(-\frac{n}{2})\]
以及
\[\Gamma(\frac{1}{2})\prod_{k=1}^{n-1}\Gamma(\frac{1}{2}+\frac{k}{n})=(2\pi)^{\frac{n-1}{2}}n^{\frac{1-n}{2}}\Gamma(\frac{n}{2})\]
于是
\[\Gamma(-\frac{1}{2})\Gamma(\frac{1}{2})\prod_{j=1}^{n-1}\Gamma(-\frac{1}{2}+\frac{j}{n})\prod_{k=1}^{n-1}\Gamma(\frac{1}{2}+\frac{k}{n})=(2\pi)^{n-1}n\Gamma(-\frac{n}{2})\Gamma(\frac{n}{2})\]
这里面
\[n\Gamma(-\frac{n}{2})\Gamma(\frac{n}{2})=-2\Gamma(1-\frac{n}{2})\Gamma(\frac{n}{2})=-\frac{2\pi}{\sin(\frac{n\pi}{2})}\]
\[\Gamma(-\frac{1}{2})=-2\sqrt{\pi},\Gamma(\frac{1}{2})=\sqrt{\pi}\]
于是
\[\prod_{j=1}^{n-1}\Gamma(-\frac{1}{2}+\frac{j}{n})\prod_{k=1}^{n-1}\Gamma(\frac{1}{2}+\frac{k}{n})=\frac{(2\pi)^{n-1}}{\sin(\frac{n\pi}{2})}\]
最后就有
\[\pi^{n-1}\prod_{k=1}^{n-1}\frac{1}{\cos(\frac{k\pi}{n})}=\prod_{j=1}^{n-1}\Gamma(-\frac{1}{2}+\frac{j}{n})\prod_{k=1}^{n-1}\Gamma(\frac{1}{2}+\frac{k}{n})=\frac{(2\pi)^{n-1}}{\sin(\frac{n\pi}{2})}\]
\[\prod_{k=1}^n\cos(\frac{k\pi}{n})=\frac{\sin(\frac{n\pi}{2})}{2^{n-1}}\] |
|