Forgot password?
 Create new account
View 168|Reply 5

[函数] 三角方程有解

[Copy link]

65

Threads

414

Posts

3556

Credits

Credits
3556

Show all posts

Tesla35 Posted at 2022-5-20 14:01:41 |Read mode
(2017清华429学术能力测试)已知实数$x\in(0,\frac{\pi}{2})$,则下列方程中有解的是(\qquad)\\
\twoch{$\cos(\cos x)=\sin(\sin x)$}{$\sin(\cos x)=\cos(\sin x)$}
{$\tan(\tan x)=\sin(\sin x)$}{$\tan(\sin x)=\sin(\tan x)$}

D选项如何论证不成立?

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2022-5-20 14:09:15
还 \twoch

65

Threads

414

Posts

3556

Credits

Credits
3556

Show all posts

 Author| Tesla35 Posted at 2022-5-20 14:18:57
不喜欢那个自动判断长度的

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2022-5-20 16:06:44
好紧哇,这题坑人的吧……

用泰勒展开判断都需要算到 `x^7` 才能分出胜负,MMA 输入:
  1. Series[Tan[Sin[x]] - Sin[Tan[x]], {x, 0, 10}]
Copy the Code

输出 x^7/30+(29 x^9)/756+O[x]^11

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2022-5-20 16:22:57
暴力撸掉它吧……

下证 `\tan(\sin x)>\sin(\tan x)`,令 `t=\tan(x/2)\in(0,1)`,即证以下函数恒正
\[f(t)=\tan\frac{2t}{1+t^2}-\sin\frac{2t}{1-t^2},\]
如果 `t\geqslant1/2`,则
\[\tan\frac{2t}{1+t^2}>\tan\frac45>\tan\frac\pi4=1\riff f(t)>0,\]
所以只需考虑 `t<1/2` 的情形,因 `f(0)=0`,只需证 `f'(t)>0`,求导得
\[f'(t)=\frac2{(1-t^4)^2}\left( (1-t^2)^3\sec^2\frac{2t}{1+t^2}-(1+t^2)^3\cos\frac{2t}{1-t^2} \right),\]
只需证
\[\cos^2\frac{2t}{1+t^2}\cos\frac{2t}{1-t^2}<\left( \frac{1-t^2}{1+t^2} \right)^3,\]
易证恒有
\[\cos x\leqslant1-\frac12x^2+\frac1{24}x^4,\]
所以只需证
\[\left( 1-\frac12\left( \frac{2t}{1+t^2} \right)^2+\frac1{24}\left( \frac{2t}{1+t^2} \right)^4 \right)^2\left( 1-\frac12\left( \frac{2t}{1-t^2} \right)^2+\frac1{24}\left( \frac{2t}{1-t^2} \right)^4 \right)<\left( \frac{1-t^2}{1+t^2} \right)^3,\]
由 `t<1/2`,令 `u=4t^2\in(0,1)`,上式去分母化为
\begin{align*}
&2u^3(51904512-589824u-8060928u^2-1392640u^3\\
&+49152u^4-36864u^5-4608u^6+1728u^7+216u^8-27u^9)>0,
\end{align*}
括号里面显然常数项已大于后面所有系数之和,故上式成立,即得证。

65

Threads

414

Posts

3556

Credits

Credits
3556

Show all posts

 Author| Tesla35 Posted at 2022-5-20 18:09:17
kuing 发表于 2022-5-20 16:22
暴力撸掉它吧……

下证 `\tan(\sin x)>\sin(\tan x)`,令 `t=\tan(x/2)\in(0,1)`,即证以下函数恒正

手机版Mobile version|Leisure Math Forum

2025-4-21 14:21 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list