Forgot password?
 Create new account
View 161|Reply 3

[几何] 垂心的问题

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2024-12-30 10:28:34 |Read mode
$\DeclareMathOperator{\o}{orth}$记$\o(A,B,C)$为三角形$ABC$的垂心。
对于四个点$t,u,v,w$,求证:$\o(\o(t,u,v),\o(t,u,w),u) = \o(\o(t,u,v),\o(t,v,w),v)$
Screenshot 2024-12-30 022716.png

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2024-12-30 10:33:29

代入坐标直接计算🖥️:

  1. avg[a_, b_, c_, u_, v_, w_] := (a u + b v + c w)/(a + b + c);   
  2. bary[f_, u_, v_, w_] := avg[f[u,v,w], f[v,w,u], f[w,u,v], u, v, w];
  3. f[u_, v_, w_] := 1/((u-v).(u-w));
  4. center4[u_, v_, w_]  := bary[f, u, v, w];
  5. Algebra = {t -> {tx, ty}, u -> {ux, uy}, v -> {vx, vy}, w -> {wx, wy}};
  6. FourVariable[c_] := c[c[t,u,v], c[t,u,w], u] == c[c[t,u,v], c[t,v,w], v];
  7. FourVariable[center4] /. Algebra // Simplify
Copy the Code
结果为True

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2024-12-30 10:35:05
用坐标是上面那样算的。但是换种思路,能否从垂直关系推出来?

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2024-12-30 16:29:56
这个点 $\o(\o(t,u,v),\o(t,u,w),u) = \o(\o(t,u,v),\o(t,v,w),v)$ 是关于 $t,u,v,w$ 轮换对称的吗

手机版Mobile version|Leisure Math Forum

2025-4-21 19:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list