Forgot password?
 Register account
View 240|Reply 1

[数论] 中国剩余定理

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-1-31 08:17 |Read mode
Last edited by hbghlyj 2023-3-12 01:16Wikipedia
整数 $m_1,m_2$ 互质,则对任意的整数$a_1,a_2$,同余方程组$\left\{\begin{array}{l}x \equiv a_{1}\pmod {m_1}\\ x \equiv a_{2}\pmod {m_2}\end{array}\right.$有解.
一般地,见rings The Chinese Remainder Theorem
Remark 2.19.
群$G$的正规子群$H_1,H_2$,满足$H_1H_2=G$,则
$$f:G\to(G/H_1)\times(G/H_2);\qquad x\mapsto(xH_1,xH_2)$$为满射,即使$\operatorname{codom}f$不一定是群.
如何证明呢

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-1-31 08:34

好像证明出来了

对$(G/H_1)\times(G/H_2)$的任何元素$(a_1H_1,a_2H_2)$, 设$x=a_1a_2^{-1}a_1^{-1}a_2$, 则
\begin{align*}xH_1&=a_1(a_2^{-1}a_1^{-1}a_2)H_1=a_1H_1\\xH_2&=H_2x=H_2(a_1a_2^{-1}a_1^{-1})a_2=H_2a_2=a_2H_2\end{align*}故$f(x)=(a_1H_1,a_2H_2)$.

Mobile version|Discuz Math Forum

2025-5-31 10:56 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit