Forgot password?
 Register account
View 310|Reply 0

[函数] 极值点偏移水真深之证 $a+b+2ab>4$

[Copy link]

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2023-11-1 15:30 |Read mode
Last edited by kuing 2023-11-6 12:19源自知乎提问:zhihu.com/question/624221280/answer/3271142285

题:若两不相等正实数 b,a>0 满足 $a-\ln a=b-\ln b$ ,求证: $a+b+2ab>4$ .

重新写此题,也可以用对数平均值<海伦平均值(ALG 不等式加强式): $\frac{a-b}{\ln a-\ln b}<\frac{a+4\sqrt{ab}+b}{6}$ 较快的解决.

欲证不等式等价于 \[\frac{a+b+2ab+2}6>1.\] 条件即 $\frac{a-b}{\ln a-\ln b}=1$ ,于是 \[\frac{a+b+\big({\color{blue}{2ab+2}}\big)}6>\frac{a+b+{\color{blue}{4\sqrt{ab}}}}6>1=\frac{a-b}{\ln a-\ln b},\]

得证.
isee=freeMaths@知乎

Mobile version|Discuz Math Forum

2025-6-6 14:50 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit