Forgot password?
 Create new account
View 1569|Reply 5

[函数] 极值点问题

[Copy link]

210

Threads

954

Posts

6247

Credits

Credits
6247

Show all posts

敬畏数学 Posted at 2020-3-12 10:47:22 |Read mode
函数$f(x)=\dfrac{x}{e^x}  $,记函数$ f(x) $的极值点为k,若$ f(m)=f(n),且m<n $,证明:$ 2m+n>e^k $

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2020-3-12 13:34:34
漂移/偏移 套路呗:
易知 `k=1`,条件即 `m/e^m=n/e^n`,得 `\ln(n/m)=n-m`,可以证明当 `x>1` 时
\[\ln x>e\cdot\frac{x-1}{x+2},\]所以
\[n-m=\ln\frac nm>e\cdot\frac{\frac nm-1}{\frac nm+2}=e\cdot\frac{n-m}{n+2m},\]即 `n+2m>e`。

210

Threads

954

Posts

6247

Credits

Credits
6247

Show all posts

 Author| 敬畏数学 Posted at 2020-3-12 19:33:23
回复 2# kuing

210

Threads

954

Posts

6247

Credits

Credits
6247

Show all posts

 Author| 敬畏数学 Posted at 2020-3-13 13:34:02
Last edited by 敬畏数学 at 2020-3-19 15:19:00回复 2# kuing
高手,就是那个不等式证不出来。请教?那个不等式两边同乘(x+2)即可。这题有点反常态(一般lnx前面为常数最好)。因为求导后另外一个极值点无法求出。需要变形处理。

276

Threads

691

Posts

6120

Credits

Credits
6120

Show all posts

力工 Posted at 2020-3-13 14:08:36
回复 2# kuing

$lnx>e\frac{x-1}{x+2}$第一次见到,高,实在是高啊。

210

Threads

954

Posts

6247

Credits

Credits
6247

Show all posts

 Author| 敬畏数学 Posted at 2020-4-1 21:05:59
回复 5# 力工
这个不等式直接证明好像不行,主要是零点区间卡不住!一定要变形。。。。??

手机版Mobile version|Leisure Math Forum

2025-4-21 14:28 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list