Forgot password?
 Create new account
View 1926|Reply 10

[函数] f(x)=xe^2x,f(a)=f(b),证明:e^2a+e^2b>=2/e

[Copy link]

14

Threads

30

Posts

229

Credits

Credits
229

Show all posts

依然饭特稀 Posted at 2020-2-29 18:55:23 |Read mode
Last edited by 依然饭特稀 at 2020-2-29 19:02:00 360截图20200229190002417.jpg

15

Threads

948

Posts

110K

Credits

Credits
12412

Show all posts

色k Posted at 2020-3-1 22:41:56
令 `2a = \ln t`, `2b = \ln u`,则变成 `g(x) = x\ln x`, `g(t) = g(u)`, `t\ne u`,求证 `t + u \geqslant 2/e`,这个用常规方法应该没问题吧?

14

Threads

30

Posts

229

Credits

Credits
229

Show all posts

 Author| 依然饭特稀 Posted at 2020-3-2 01:37:10
Last edited by 依然饭特稀 at 2020-3-2 07:54:00原题是这样的,陷入第三问得到的a+b<-1,去证明了
21E1EBF3DF3497502E68DA06511B77A7.jpg

14

Threads

30

Posts

229

Credits

Credits
229

Show all posts

 Author| 依然饭特稀 Posted at 2020-3-2 01:39:15

9

Threads

38

Posts

924

Credits

Credits
924

Show all posts

player1703 Posted at 2020-3-3 00:48:01
Last edited by player1703 at 2020-3-3 00:55:00回复 3# 依然饭特稀
由$a+b<-1$ 得:
$e^{2a}+e^{2b} = (e^a)^2+(e^b)^2 >= 2e^ae^b = 2e^{a+b} >2e^{-1}$
如果$a$, $b$可以是两个相等的实根$a=b=-\frac{1}{2}$时取等号, 就得到了标题的结论.

9

Threads

38

Posts

924

Credits

Credits
924

Show all posts

player1703 Posted at 2020-3-3 01:57:11
回复 5# player1703

不好意思搞错了
最后一步是$2e^{a+b}<2e^{-1}$所以行不通。。。

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2020-3-3 04:03:30
回复 3# 依然饭特稀


在已知$a+b<-1$的情况下还是很容易的

我们令$f(a)=f(b)=y$,令$a=f_1^{-1}(y), b=f_2^{-1}(y)$分别为递减段和递增段的反函数
则会有
\[\frac{da}{dy}=\frac{1}{f'(a)}=\frac{1}{e^{2a}(1+2a)}\]
同理
\[\frac{db}{dy}=\frac{1}{e^{2b}(1+2b)}\]
然后
\[\frac{d}{dy}[e^{2a}+e^{2b}]=2e^{2a}\frac{da}{dy}+2e^{2b}\frac{db}{dy}\]
\[=\frac{2e^{2a}}{e^{2a}(1+2a)}+\frac{2e^{2b}}{e^{2b}(1+2b)}\]
\[=\frac{2}{1+2a}+\frac{2}{1+2b}=\frac{4(a+b+1)}{(1+2a)(1+2b)}\]
易证$a<-\frac{1}{2}<b<0$,加上$a+b+1<0$的话,会有
\[\frac{d}{dy}[e^{2a}+e^{2b}]=\frac{4(a+b+1)}{(1+2a)(1+2b)}>0\]
也就是这整个东西对$y$递增,那当然在$y$最小时,也就是$y=-\frac{1}{2e}$时取最小值,此时$a=b=-\frac{1}{2}$

14

Threads

30

Posts

229

Credits

Credits
229

Show all posts

 Author| 依然饭特稀 Posted at 2020-3-4 23:17:58
回复 5# player1703
这是最开始的办法,还用了其他的都放过了

14

Threads

30

Posts

229

Credits

Credits
229

Show all posts

 Author| 依然饭特稀 Posted at 2020-3-4 23:19:09
回复 7# 战巡
这个方法太高端了

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2020-4-6 08:51:09

这个像什么极值点偏移?
下面是有奖整征解:

有奖征解一道题(有20元红包) mp.weixin.qq.com/s?__biz=MzIxMDYxMDMxOQ==& … 4f4881c80620d46c1#rd

14

Threads

51

Posts

463

Credits

Credits
463

Show all posts

TTAANN001 Posted at 2020-4-6 09:04:59

手机版Mobile version|Leisure Math Forum

2025-4-21 14:40 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list