Forgot password?
 Create new account
View 199|Reply 4

[函数] 这类函数试题有更自然的解法吗?

[Copy link]

93

Threads

88

Posts

983

Credits

Credits
983

Show all posts

aishuxue Posted at 2022-8-27 17:06:42 |Read mode
已知$x_1$,  $x_2$为函数$f(x)=(x-1)e^x-a(x+1)$的两个极值点,  求证:  $f(x_1)+f(x_2)>-\dfrac{4}{e}$.

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2022-8-28 03:33:03
\[f'(x)=xe^x-a=0\]
因此
\[x_1e^{x_1}=x_2e^{x_2}=a\]
这里令
\[x_1=g(a),x_2=h(a)\]

\[f(x_1)+f(x_2)=f(g(a))+f(h(a))\]
\[=e^{g(a)}(g(a)-1)-a(g(a)+1)+e^{h(a)}(h(a)-1)-a(h(a)+1)\]
\[\frac{d}{da}[f(x_1)+f(x_2)]=-1-ag'(a)+g(a)(e^{g(a)}g'(a)-1)-1-ah'(a)+h(a)(e^{h(a)}h'(a)-1)\]
注意这里$g(a)e^{g(a)}=h(a)e^{h(a)}=a$,因此
\[=-2-g(a)-h(a)=-2-x_1-x_2\]

另一边,由于$x_1e^{x_1}=x_2e^{x_2}$,且$x_1,x_2<0$,会有
\[x_1-x_2=-[\ln(-x_1)-\ln(-x_2)]\]
\[\frac{(-x_1)-(-x_2)}{\ln(-x_1)-\ln(-x_2)}=1\le\frac{-x_1-x_2}{2}\]
故此
\[-2-x_1-x_2\ge 0\]
也就是$f(x_1)+f(x_2)$关于$a$递增

不难证明$a$的最小值为$a=-\frac{1}{e}$,此时$x_1=x_2=-1$,故此
\[f(x_1)+f(x_2)>2f(-1)=-\frac{4}{e}\]

93

Threads

88

Posts

983

Credits

Credits
983

Show all posts

 Author| aishuxue Posted at 2022-8-29 07:37:20
战巡 发表于 2022-8-28 03:33
\[f'(x)=xe^x-a=0\]
因此
\[x_1e^{x_1}=x_2e^{x_2}=a\]
本质上是“隐函数求导”

93

Threads

88

Posts

983

Credits

Credits
983

Show all posts

 Author| aishuxue Posted at 2022-8-30 11:24:21
战巡 发表于 2022-8-28 03:33
\[f'(x)=xe^x-a=0\]
因此
\[x_1e^{x_1}=x_2e^{x_2}=a\]
我是这样想的:
易得$x_1e^{x_1}=x_2e^{x_2}=a$,
于是\begin{align*}
f(x_1)+f(x_2)&=(x_1-1)e^{x_1}-a(x_1+1)+(x_2-1)e^{x_2}-a(x_2+1)\\
&=-e^{x_1}-e^{x_2}-ax_1-ax_2\\
&=-e^{x_1}-e^{x_2}-(x_2e^{x_2})x_1-(x_1e^{x_1})x_2\\
&=-(x_1x_2+1)(e^{x_1}+e^{x_2})
\end{align*}
于是只需要证明$$(x_1x_2+1)(e^{x_1}+e^{x_2})<\dfrac{4}{e}.$$
做到这个地方就卡住了!

93

Threads

88

Posts

983

Credits

Credits
983

Show all posts

 Author| aishuxue Posted at 2022-8-30 11:37:09
本想拆解成两个不等式证明,  就是(1)与(2),  但方向不一致!

手机版Mobile version|Leisure Math Forum

2025-4-21 01:21 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list