Forgot password?
 Create new account
View 1601|Reply 2

[不等式] 极值点偏移也升级啦

[Copy link]

109

Threads

226

Posts

2915

Credits

Credits
2915

Show all posts

facebooker Posted at 2019-8-31 12:15:18 |Read mode
已知$f(x)=(x-1)\ln x,f(x_1)=f(x_2)=\ln m,0<x_1<x_2.$求证:
(1)$ m^\frac{m}{1-m}<x_1<\frac{1}{m}$
(2)$\frac{1}{m}<x_1x_2<\frac{1}{\sqrt{m}}$

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2019-8-31 14:30:17
(2)
\[\ln x_1=\frac{\ln m}{x_1-1},\,\ln x_2=\frac{\ln m}{x_2-1},\]相加有
\[\ln(x_1x_2)=\left( \frac1{x_1-1}+\frac1{x_2-1} \right)\ln m,\]故
\[x_1x_2=m^{\frac1{x_1-1}+\frac1{x_2-1}},\]易知 `m>1`,所以等价于证
\[-1<\frac1{x_1-1}+\frac1{x_2-1}<-\frac12,\]去分母可知等价于证 `x_1x_2<1` 且 `(x_1+1)(x_2+1)>4`,这就变成了一般的漂移,应该不难,暂略。

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2019-8-31 14:50:21
(1)只需证 `f\bigl(m^{\frac m{1-m}}\bigr)>\ln m` 且 `f(1/m)<\ln m`,后者是显然的,前者化简后为 `m^{\frac1{1-m}}<1` 同样显然。

手机版Mobile version|Leisure Math Forum

2025-4-21 01:38 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list