|
战巡
Posted 2022-8-30 11:21
这也没啥难的,还是上次的老套路
令$x_1e^{x_1}=x_2e^{x_2}=a$,然后$x_1=g(a),x_2=h(a)$,那么有
\[\frac{d}{da}(x_1x_2+1)(e^{x_1}+e^{x_2})=\frac{d}{da}(g(a)h(a)+1)(e^{g(a)}+e^{h(a)})\]
\[=(g(a)h(a)+1)(e^{g(a)}g'(a)+e^{h(a)}h'(a))+(e^{g(a)}+e^{h(a)})(h(a)g'(a)+g(a)h'(a))\]
注意这里
\[g'(a)=(\frac{d}{dx_1} x_1e^{x_1})^{-1}=\frac{1}{e^{x_1}(x_1+1)}=\frac{1}{e^{g(a)}(g(a)+1)}\]
\[h'(a)=\frac{1}{e^{x_2}(x_2+1)}=\frac{1}{e^{h(a)}(h(a)+1)}\]
如果再加上$e^{g(a)}=\frac{a}{g(a)},e^{h(a)}=\frac{a}{h(a)}$,全部丢进去化简,就会得到
套进去变成
\[=(g(a)h(a)+1)(\frac{1}{g(a)+1}+\frac{1}{h(a)+1})+(\frac{a}{g(a)}+\frac{a}{h(a)})(\frac{h(a)g(a)}{a(g(a)+1)}+\frac{g(a)h(a)}{a(h(a)+1)})\]
\[=(g(a)h(a)+1)(\frac{1}{g(a)+1}+\frac{1}{h(a)+1})+(g(a)+h(a))(\frac{1}{g(a)+1}+\frac{1}{h(a)+1})\]
\[=2+g(a)+h(a)\]
上次已经证明过这玩意$\le 0$,说明随$a$递减,$a=-\frac{1}{e}$时当然就有最小值$\frac{4}{e}$了 |
|