Forgot password?
 Create new account
View 153|Reply 6

[函数] 根式三角周期与最值计算

[Copy link]

3

Threads

0

Posts

18

Credits

Credits
18

Show all posts

virus Posted at 2024-6-9 12:03:40 From the mobile phone |Read mode
\begin{align*}
f(x)= \frac{cosx-sinx-1}{\sqrt{6+2cosx+4sinx}},x∈R
\end{align*}
计算$f(x)$的周期与极值

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2024-6-9 13:18:33
遇事不决万能公式呗...

令$t=\tan(\frac{x}{2})$,则
\[f(x)=\frac{\frac{1-t^2}{1+t^2}-\frac{2t}{1+t^2}-1}{\sqrt{6+2\frac{1-t^2}{1+t^2}+\frac{8t}{1+t^2}}}\]
\[=-\frac{t(1+t)}{\sqrt{(1+t^2)(t^2+2t+2)}}\]
\[\frac{d}{dt}f(x)=-\frac{(1+2t)(t^2+t+2)}{((1+t^2)(t^2+2t+2))^{\frac{3}{2}}}=0\]
\[t=-\frac{1}{2}=\tan(\frac{x}{2})\]

先考虑$x\in [-\pi,\pi)$,那么$t\in [-\infty,+\infty]$,不难得到上面那个是最大值。

最小值则要考虑区间端点,有
\[\lim_{t\to \infty}f(x)=-1, \lim_{t\to -\infty}f(x)=-1\]

故此最小值在$t=\pm\infty$时取到,此时$x=\pm\pi$

上述结果说明,$x=(2k+1)\pi$为极小值,$x=-2\arctan(\frac{1}{2})+2k\pi$为极大值,周期显然为$2\pi$。

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2024-6-9 13:52:33
注意到
\[f(x)=\frac{\cos x+1-(\sin x+2)}{\sqrt{(\cos x+1)^2+(\sin x+2)^2}}=\frac{u-1}{\sqrt{u^2+1}},\]
其中
\[u=\frac{\cos x+1}{\sin x+2}\in\left[0,\frac43\right],\]
由此易得
\[f(x)\in\left[-1,\frac15\right].\]

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2024-6-9 17:43:07
kuing 发表于 2024-6-9 13:52
注意到
\[f(x)=\frac{\cos x+1-(\sin x+2)}{\sqrt{(\cos x+1)^2+(\sin x+2)^2}}=\frac{u-1}{\sqrt{u^2+1}}, ...
好眼熟的处理~

Comment

08年重庆题  Posted at 2024-6-14 14:43
isee=freeMaths@知乎

65

Threads

414

Posts

3556

Credits

Credits
3556

Show all posts

Tesla35 Posted at 2024-6-13 23:18:37
isee 发表于 2024-6-9 17:43
好眼熟的处理~
早年重庆的高考题改编

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2024-6-13 23:45:54
Tesla35 发表于 2024-6-13 23:18
早年重庆的高考题改编
嗯,《撸题集》P.1025 FAQ 31. (2008 重庆理数 10)

手机版Mobile version|Leisure Math Forum

2025-4-20 22:04 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list