Forgot password
 Register account
View 34|Reply 2

[几何] 内心证明三线段构成一直角三角形

[Copy link]

55

Threads

976

Posts

37

Reputation

Show all posts

乌贼 posted 2025-6-28 13:59 |Read mode
1.png      
$ I $为圆内接$ \triangle ABC $内心,$ AI $与圆另一交点为$ D $,$ E $为劣弧$ CD $上一点,$ F、K $分别为$ AE、AB $与$ \triangle BIC $外接圆交点,$ AKGF $四点共圆。求证:$EG^2=EC^2+FG^2 $

767

Threads

4687

Posts

27

Reputation

Show all posts

isee posted 2025-6-28 17:49
Last edited by isee 2025-6-28 18:11好久不见!

难得啊,主要是你那边打开速度快了吧?
(我倒是变慢了,多数时候)

55

Threads

976

Posts

37

Reputation

Show all posts

original poster 乌贼 posted 2025-6-29 16:57
如图: 2.png
在$ EF $上取一点$ M $使$ GM=GF $,有\[ \angle GMF=\angle GFM=\angle AKG=\angle ACG \]即$ ACMG $四点共圆,得\[ \angle EMC=\angle DGC=\angle DGK=\angle KFE=\angle FKA+\angle FAK=FCB+\angle ECB=\angle ECF \]得\[ \triangle EMC\sim \triangle ECF\riff EC^2=EM\cdot EF \]过$ E $点作以$ G $为圆心,$ GF $为半径的圆切线$ MN $,即有\[ \begin{gather*}
EN^2=EM\cdot EF=EC^2\\GF=GN\\\angle ENG=90\du
\end{gather*} \]
以上结论为解决下帖:forum.php?mod=viewthread&tid=8864

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-6-29 17:57 GMT+8

Powered by Discuz!

Processed in 0.017722 seconds, 40 queries