Forgot password?
 Create new account
View 1796|Reply 4

[函数] 来自减压群的泰勒漂移

[Copy link]

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2018-2-21 23:41:31 |Read mode
生如夏花(2365*****) 2018/2/21 19:54:54
TIM截图20180217015241.jpg
生如夏花(2365*****) 2018/2/21 19:56:00
李尚志的,说级数展开简单,究竟怎么展开做呢?

取对数有
\[a^b=b^a\iff \frac{\ln a}a=\frac{\ln b}b,\]
易证 $(\ln x)/x$ 先增后减,在 $x=e$ 处取极大值,所以 $a>e>b$。

由泰勒展开,有
\[\ln x=1+\frac{x-e}{e}-\frac{(x-e)^2}{2 e^2}+\frac{(x-e)^3}{3\xi^3},\]
其中 $\xi$ 介于 $x$ 与 $e$ 之间,由此可见
\[\ln x \led
&<1+\frac{x-e}{e}-\frac{(x-e)^2}{2 e^2},&&0<x<e,\\
&>1+\frac{x-e}{e}-\frac{(x-e)^2}{2 e^2},&&x>e,
\endled\]
所以
\[\frac1b\left(1+\frac{b-e}{e}-\frac{(b-e)^2}{2 e^2}\right)>\frac{\ln b}b
=\frac{\ln a}a>\frac1a\left(1+\frac{a-e}{e}-\frac{(a-e)^2}{2 e^2}\right),\]
作差分解即得
\[\frac{(a-b)(a b-e^2)}{2 a b e^2}>0,\]
所以 $ab>e^2$。

PS、这种招式其实我在《撸题集》里已经用过,见 P720 题目 5.3.6(或直接看 P721 开头即可),只不过当时没提泰勒,而是用一个“易证”带过,实际上我就是用泰勒搞的。

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2018-2-22 23:51:46
这是经典题目的变式题(多种方法,例如对数平均不等式等等)

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2018-2-23 16:04:54
回复 2# 其妙


    就搞个文字没过程不过瘾

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2022-3-2 10:34:38

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2022-3-2 11:04:54
回复 4# hbghlyj
相关:Find all positive integers $a$ such that for any positive integer $n\ge 5$ we have $2^n-n^2\mid a^n-n^a$.
artofproblemsolving.com/community/c6h549594p3188705

手机版Mobile version|Leisure Math Forum

2025-4-21 19:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list