Forgot password
 Register account
View 181|Reply 2

[几何] 外接球

[Copy link]

186

Threads

206

Posts

0

Reputation

Show all posts

guanmo1 posted 2022-11-18 12:51 from mobile |Read mode
四面体,两对对棱为3,还有一对对棱长分别为根号6和两倍根号3,求其外接球半径。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2022-11-18 14:00
若四面体 `AB=2a`, `CD=2b` 且其余四条棱长均为 `m`,设外接球半径为 `R`,取 `AB`, `CD` 中点 `E`, `F`,记球心为 `O`,则有
\begin{align*}
EC&=ED=\sqrt{m^2-a^2},\\
OE&=\sqrt{R^2-a^2},\\
OF&=\sqrt{R^2-b^2},
\end{align*}
显然 `O` 在直线 `EF` 上,故
\[EC^2=CF^2+EF^2=CF^2+(OE\pm OF)^2,\]

\[m^2-a^2=b^2+\bigl(\sqrt{R^2-a^2}\pm\sqrt{R^2-b^2}\bigr)^2,\]
解得
\[R=\frac12\sqrt{\frac{m^4-4a^2b^2}{m^2-a^2-b^2}}.\]

186

Threads

206

Posts

0

Reputation

Show all posts

original poster guanmo1 posted 2022-11-18 16:54 from mobile
👍👍👍

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 05:55 GMT+8

Powered by Discuz!

Processed in 0.016315 seconds, 43 queries