Forgot password?
 Create new account
View 131|Reply 2

[几何] 外接球

[Copy link]

181

Threads

198

Posts

2172

Credits

Credits
2172

Show all posts

guanmo1 Posted at 2022-11-18 12:51:15 From the mobile phone |Read mode
四面体,两对对棱为3,还有一对对棱长分别为根号6和两倍根号3,求其外接球半径。

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2022-11-18 14:00:11
若四面体 `AB=2a`, `CD=2b` 且其余四条棱长均为 `m`,设外接球半径为 `R`,取 `AB`, `CD` 中点 `E`, `F`,记球心为 `O`,则有
\begin{align*}
EC&=ED=\sqrt{m^2-a^2},\\
OE&=\sqrt{R^2-a^2},\\
OF&=\sqrt{R^2-b^2},
\end{align*}
显然 `O` 在直线 `EF` 上,故
\[EC^2=CF^2+EF^2=CF^2+(OE\pm OF)^2,\]

\[m^2-a^2=b^2+\bigl(\sqrt{R^2-a^2}\pm\sqrt{R^2-b^2}\bigr)^2,\]
解得
\[R=\frac12\sqrt{\frac{m^4-4a^2b^2}{m^2-a^2-b^2}}.\]

181

Threads

198

Posts

2172

Credits

Credits
2172

Show all posts

 Author| guanmo1 Posted at 2022-11-18 16:54:09 From the mobile phone
👍👍👍

手机版Mobile version|Leisure Math Forum

2025-4-20 22:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list