|
本帖最后由 hbghlyj 于 2025-1-17 10:11 编辑 特征标表的性质之一为其在行与列上都会有着正交关系。
二重循环群(dicyclic group)${\displaystyle \operatorname {Dic} _{n}=\left\langle a,x\mid a^{2n}=1,\ x^{2}=a^{n},\ x^{-1}ax=a^{-1}\right\rangle \,\!}$的不同的二维表示:groupprops.subwiki.org/wiki/Linear_representation_theory_of_dicyclic_groups
对于每个${\displaystyle k=1,2,\dots ,n-1},$ 群$\mathrm{Dic}_{n}$的生成元$x,a$有二维表示$\phi:\operatorname {Dic} _{n}\to\mathrm{GL}(2,\mathbb{C})$:
$\phi(a)=\begin{pmatrix}e^{i\pi k/n}&0\\0&e^{-i\pi k/n}\\\end{pmatrix},\qquad \phi(x)=\begin{pmatrix}0&-1\\1&0\\\end{pmatrix},$
群$\mathrm{Dic}_{n}$有$4n$个元素:$a^m$和$xa^m$,对于$m=1,\dots,2n$,它们的表示为:
$\phi(a^m)=\begin{pmatrix}e^{i\pi km/n}&0\\0&e^{-i\pi km/n}\\\end{pmatrix},\qquad\phi(xa^m)=\begin{pmatrix}0&-e^{-i\pi km/n}\\e^{i\pi km/n}&0\\\end{pmatrix},$
于是
$\chi(a^m)=\operatorname{tr}(\phi(a^m))=e^{ikm\pi/n}+e^{-ikm\pi/n},$
$\chi(xa^m)=\operatorname{tr}(\phi(xa^m))=0,$
取$k,k'\in\{1,2,\dots,n-1\},k\ne k'$,用 特征标表中的行 的正交关系${\displaystyle \sum _{g\in G}\chi _{1}(g){\overline {\chi _{2}(g)}}=0}$得$$\tag2\label2\sum_{m=1}^{2n} \left[\left(e^{i\pi\frac{k}{n}}\right)^m+\left(e^{i\pi\frac{-k}{n}}\right)^m\right]\left[\left(e^{i\pi\frac{k'}{n}}\right)^m+\left(e^{i\pi\frac{-k'}{n}}\right)^m\right]=0$$
对比$m$和$m+n$时的式子:
$$\left[\left(e^{i\pi\frac{k}{n}}\right)^{m+n}+\left(e^{i\pi\frac{-k}{n}}\right)^{m+n}\right]=e^{ik\pi}\left[\left(e^{i\pi\frac{k}{n}}\right)^{m}+\left(e^{i\pi\frac{-k}{n}}\right)^{m}\right]$$
$$\left[\left(e^{i\pi\frac{k'}{n}}\right)^{m+n}+\left(e^{i\pi\frac{-k'}{n}}\right)^{m+n}\right]=e^{ik'\pi}\left[\left(e^{i\pi\frac{k'}{n}}\right)^{m}+\left(e^{i\pi\frac{-k'}{n}}\right)^{m}\right]$$
因此$$\sum_{m=n+1}^{2n} \left[\left(e^{i\pi\frac{k}{n}}\right)^m+\left(e^{i\pi\frac{-k}{n}}\right)^m\right]\left[\left(e^{i\pi\frac{k'}{n}}\right)^m+\left(e^{i\pi\frac{-k'}{n}}\right)^m\right]=e^{i(k+k')\pi}\sum_{m=1}^{n} \left[\left(e^{i\pi\frac{k}{n}}\right)^m+\left(e^{i\pi\frac{-k}{n}}\right)^m\right]\left[\left(e^{i\pi\frac{k'}{n}}\right)^m+\left(e^{i\pi\frac{-k'}{n}}\right)^m\right]$$
将\eqref{2}分为两部分,$m=1,\dots,n$和$m=n+1,\dots,2n$,并使用上式:
$$(1+e^{i(k+k')\pi})\sum_{m=1}^{n} \left[\left(e^{i\pi\frac{k}{n}}\right)^m+\left(e^{i\pi\frac{-k}{n}}\right)^m\right]\left[\left(e^{i\pi\frac{k'}{n}}\right)^m+\left(e^{i\pi\frac{-k'}{n}}\right)^m\right]=0$$
当$k+k'$为奇数时,$1+e^{i(k+k')\pi}=0$,就得到了$0=0$.
当$k+k'$为偶数时,约去$1+e^{i(k+k')\pi}=2$得到
$$\label3\tag{3}\sum_{m=1}^{n} \left[\left(e^{i\pi\frac{k}{n}}\right)^m+\left(e^{i\pi\frac{-k}{n}}\right)^m\right]\left[\left(e^{i\pi\frac{k'}{n}}\right)^m+\left(e^{i\pi\frac{-k'}{n}}\right)^m\right]=0$$
上式不含$m=0$,而在$m=0$时为$2\times2$,就得到了公式\eqref{1}.
上面假定$k\ne k'$,在$k= k'$的情况则Schur relation变为${\displaystyle \sum _{g\in G}\chi _{1}(g){\overline {\chi _{1}(g)}}=|G|}$,这里$\abs{\operatorname {Dic} _n}=4n$,\eqref{2}变为$$\tag{2'}\label{2'}\sum_{m=1}^{2n} \left[\left(e^{i\pi\frac{k}{n}}\right)^m+\left(e^{i\pi\frac{-k}{n}}\right)^m\right]^2=4n$$
式\eqref{3}变为$$\tag{3'}\label{3'}2\sum_{m=1}^{n} \left[\left(e^{i\pi\frac{k}{n}}\right)^m+\left(e^{i\pi\frac{-k}{n}}\right)^m\right]^2=4n$$
即
\[
\sum_{m=1}^n\left[\cos\left(\pi\frac{2k}nm\right)+\cos0\right]\\
=n
\]
即
\[
\sum_{m=1}^n\cos\left(\pi\frac{2k}nm\right)\\
=0
\]
显然成立。表明上面的推导应该是对的 |
|