|
tchappy ha的回答:
Let $\phi$ be a mapping $\phi: G\ni x\mapsto x^{-1}(xT)\in G$.
If $\phi(x)=\phi(y)$, then $x^{-1}(xT)=y^{-1}(yT)$.
Then, $(xT)(yT)^{-1}=xy^{-1}$.
Then, $(xT)(y^{-1}T)=xy^{-1}$.
Then, $(xy^{-1})T=xy^{-1}$.
By the assumption of Problem 10, $xy^{-1}=e$.
So, $x=y$.
So, $\phi$ is injective.
Since $G$ is a finite set, $\phi$ is also surjective.
So, for every $g\in G$, there exists $x\in G$ such that $g=x^{-1}(xT)$.
I will write Karthik Kannan's answer here:
Let $g$ be an arbitrary element of $G$.
Then, by Problem 10, there exists $x\in G$ such that $g=x^{-1}(xT)$.
Then, $gT=(x^{-1}(xT))T=(x^{-1}T)(xT^2)=(xT)^{-1}(xI)=(xT)^{-1}x=(x^{-1}(xT))^{-1}=g^{-1}$.
So, $gT=g^{-1}$ holds for every $g\in G$.
Let $a,b$ be arbitrary two elements of $G$.
Then, $(ab)^{-1}=(ab)T=(aT)(bT)=a^{-1}b^{-1}=(ba)^{-1}$.
So, $ab=ba$. |
|