Forgot password?
 Create new account
View 134|Reply 4

[数列] 感觉有难度的求通项

[Copy link]

16

Threads

35

Posts

329

Credits

Credits
329

Show all posts

Canhuang Posted at 2025-1-21 20:20:14 |Read mode
$a_0 = 1, a_1 = 1, n(n+1)a_{n+1} = n(n-1)a_n + (n-2)a_{n-1}$

Comment

越南的Can大神?  Posted at 2025-1-21 21:08
不是啊。我是菜机。  Posted at 2025-1-21 21:19

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2025-1-21 21:31:42
也不难嘛,令$(n-1)a_n=b_n$,然后$b_0=-1,b_1=0$
\[(n+1)b_{n+1}=nb_n+b_{n-1}\]
\[(n+1)(b_{n+1}-b_n)=-(b_n-b_{n-1})\]
\[(-1)^{n+1}(n+1)!(b_{n+1}-b_n)=(-1)^{n}n!(b_n-b_{n-1})\]
故此
\[(-1)^{n+1}(n+1)!(b_{n+1}-b_n)=(-1)^0(0+1)!(b_1-b_0)=1\]
\[b_{n+1}-b_n=\frac{(-1)^{n+1}}{(n+1)!}\]
\[b_n-b_1=b_n=\sum_{k=1}^n\frac{(-1)^{k}}{k!}=(n-1)a_n\]
\[a_n=\frac{1}{n-1}\sum_{k=1}^n\frac{(-1)^k}{k!}\]
不过最后还得补一下,$a_1=1$单列出来,不能套这个公式

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2025-1-21 21:45:38
战巡 发表于 2025-1-21 21:31
也不难嘛,令$(n-1)a_n=b_n$,然后$b_0=-1,b_1=0$
\[(n+1)b_{n+1}=nb_n+b_{n-1}\]
\[(n+1)(b_{n+1}-b_n)=-( ...
刚打完草稿想回复,还好先刷新一下,几乎一样😄
对比一下发现 2# 有些小错,应该是
\[(-1)^{n+1}(n+1)!(b_{n+1}-b_n)=(-1)^11!(b_1-b_0)=-1,\]
差了个符号,因此是
\[b_{n+1}-b_n=\frac {(-1)^n}{(n+1)!},\]
得当 `n\geqslant2` 时
\[a_n=\frac1{n-1}b_n=\frac1{n-1}\sum_{k=2}^n\frac {(-1)^{k-1}}{k!}.\]
(`k` 是从 `2` 开始)

手机版Mobile version|Leisure Math Forum

2025-4-21 01:10 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list