|
Last edited by lemondian at 2025-5-20 20:38显然:
1#的3元与4元如下:
例1:若$a,b,c>0$,求证:$\dfrac{1}{a^3+b^3+abc}+\dfrac{1}{b^3+c^3+abc}+\dfrac{1}{c^3+a^3+abc}\leqslant \dfrac{1}{abc}$.
例2:若$a,b,c,d>0$,求证:$\dfrac{1}{a^4+b^4+c^4+abcd}+\dfrac{1}{b^4+c^4+d^4+abcd}+\dfrac{1}{c^4+d^4+a^4+abcd}+\dfrac{1}{d^4+a^4+b^4+abcd} \leqslant \dfrac{1}{abcd}$.
然后有人说,例1与例2可以统一推广为题2,并可以进一上步推广为题3:
题2:设正整数$n>m$,$x_k>0,x_1x_2\cdots x_n=1$.
求证:$\dfrac{1}{x_1+x_2+\cdots x_{1+m-1}+n-m}+\dfrac{1}{x_2+x_3+\cdots x_{2+m-1}+n-m}+\cdots +\dfrac{1}{x_n+x_{n+1}+\cdots x_{n+m-1}+n-m}\leqslant 1$.
题3:设正整数$n>m$,$x_k>0,x_1x_2\cdots x_n=1$,实数$t\geqslant n-m$.
求证:$\dfrac{1}{x_1+x_2+\cdots x_{1+m-1}+t}+\dfrac{1}{x_2+x_3+\cdots x_{2+m-1}+t}+\cdots +\dfrac{1}{x_n+x_{n+1}+\cdots x_{n+m-1}+t}\leqslant \dfrac{n}{t+m}$.
我有2个问题:
(1)为什么例1与例2可推广为题2与题3?
(2)题2与题3如何证明? |
|