Forgot password?
 Create new account
View 127|Reply 0

[几何] 三角形 ABC 中 若 $AB^2=AD^2+BD\cdot DC$ 则 $AB=AC$

[Copy link]

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2023-1-6 23:18:07 |Read mode
源自知乎提问





:点 D 为三角形 ABC 边 BC 上的一点,若 $AB^2=AD^2+BD\cdot DC$ ,则 $AB=AC$.


以黑体表示向量,如 $\bm {AB}=\overrightarrow {AB}$ 依次类推.

条件转化为向量 \begin{gather*}
AB^2=AD^2+BD\cdot DC\\[1ex]
(\bm {AB}- \bm {AD})(\bm {AB}+ \bm {AD})=\bm {BD}\cdot \bm {DC}\\[1ex]
\bm {DB}\cdot (\bm {AB}+ \bm {AD})+\bm {DB}\cdot \bm {DC}=0\\[1ex]
\bm {DB}\cdot (\bm {AB}+ \bm {AD}+\bm {DC})=0\\[1ex]
\bm {DB}\cdot (\bm {AB}+\bm {AC})=0\tag{01}\\[1ex]
\iff AB=AC.
\end{gather*} 注: $(01)$ 式表明 BC 上的中线与 BC 垂直.
isee=freeMaths@知乎

手机版Mobile version|Leisure Math Forum

2025-4-21 01:15 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list