Forgot password?
 Create new account
View 171|Reply 3

[不等式] 研究一道四元分式不等式时得出的命题

 Like [Copy link]

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2024-11-24 17:25:10 |Read mode
Last edited by kuing at 2024-11-24 20:39:00昨天在 这帖 看到一个四元不等式:
(来自知乎评论区

那些系数怪怪的,还有那三个 b 的系数都是 3,有点多余,也不知是不是打错。

先不管它了,我要写的是我在思考时推导出的如下命题,这大概比原题要有意义一些。

命题:已知 `a`, `b`, `c`, `d>0`, `t>1/2`,则有
\[\frac{t^2a}{b+c}+\frac b{c+d}+\frac{t^2c}{d+a}+\frac{(2t-1)^2d}{a+b}\geqslant2(2t-1).\]

证明:由 CS 及均值有
\begin{align*}
\LHS&=\frac{t^2a^2}{a(b+c)}+\frac{b^2}{b(c+d)}+\frac{t^2c^2}{c(d+a)}+\frac{(2t-1)^2d^2}{d(a+b)}\\
&\geqslant\frac{\bigl(ta+b+tc+(2t-1)d\bigr)^2}{\sum a(b+c)}\\
&=\frac{\bigl(t(a+c)+b+(2t-1)d\bigr)^2}{(a+c)(b+d)+2ac+2bd}\\
&\geqslant\frac{\bigl(t(a+c)+b+(2t-1)d\bigr)^2}{(a+c)(b+d)+\frac12(a+c)^2+2bd}\\
&=\frac{2\bigl(t(a+c)+b+(2t-1)d\bigr)^2}{(a+c+2b)(a+c+2d)},
\end{align*}
所以只需证明
\[\bigl(t(a+c)+b+(2t-1)d\bigr)^2\geqslant(2t-1)(a+c+2b)(a+c+2d),\]
由均值有
\[\RHS\leqslant\left(\frac{(a+c+2b)+(2t-1)(a+c+2d)}2\right)^2=\LHS,\]
所以命题得证。`\square`

另外,若允许变量取零,则当 `a=c=0` 且 `b=(2t-1)d` 时取等。

由此命题可推出原题的加强:令 `2t-1=\sqrt6`,则易知 `t^2<3`,于是有
\[\frac{3a}{b+c}+\frac b{c+d}+\frac{3c}{d+a}+\frac{6d}{a+b}\geqslant2\sqrt6,\]
作置换 `(a,b,c,d)\to(a,3b,2c,d)`,即
\[\frac{3a}{3b+2c}+\frac{3b}{2c+d}+\frac{6c}{d+a}+\frac{6d}{a+3b}\geqslant2\sqrt6,\]
这当然强于原题的
\[\frac{6a}{3b+c}+\frac{3b}{2c+d}+\frac{7c}{d+a}+\frac{6d}{a+3b}\geqslant\frac{12}5.\]

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

 Author| kuing Posted at 2024-11-24 17:35:06
Last edited by kuing at 2024-11-24 20:59:00 本层为控制 1# 引用块的 CSS:
横屏时显示完整题目;
竖屏时只显示中间那个不等式。
(只是一个尝试)

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2024-11-24 23:33:54
又见把分母的系数“拉平”~~晚些再细看~~厉害厉害,学习学习~~
isee=freeMaths@知乎

47

Threads

358

Posts

3014

Credits

Credits
3014

Show all posts

业余的业余 Posted at 2024-11-25 00:22:21
isee 发表于 2024-11-24 23:33
又见把分母的系数“拉平”~~晚些再细看~~厉害厉害,学习学习~~
学习~~

但几乎不可能记住😇

手机版Mobile version|Leisure Math Forum

2025-4-21 01:23 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list