Forgot password
 Register account
View 308|Reply 6

[几何] 等轴双曲线内接三角形的垂心在双曲线上

[Copy link]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2023-3-5 19:01 |Read mode
源自知乎提问

FAQ了


:等轴双曲线内接三角形的垂心在双曲线上.






不妨设等轴双曲线为 $xy=1$ , $A(a,1/a)$ , $B(b,1/b)$ , $C(c,1/c)$ ,三角形 ABC 垂心为 $H(x,y)$ ,下面证明垂心坐标满足 $xy=1.$

\begin{gather*}
\left\{\begin{aligned}\overrightarrow {AH}\cdot \overrightarrow{CB}&=0,\\[1ex]
\overrightarrow{BH}\cdot \overrightarrow{AC}&=0,\end{aligned}\\[1ex]
\right.\\[1ex]
\left\{\begin{aligned} (x-a)(b-c)+(y-\frac1a)(\frac1b-\frac1c)&=0,\\[1ex]
(x-b)(c-a)+(y-\frac1b)(\frac1c-\frac1a)&=0,\end{aligned}\right.\\[1ex]
\left\{\begin{aligned} bc(x-a)&=y-\frac1a,\\[1ex]
ac(x-b)&=y-\frac1b,\end{aligned}\right.\\[1ex]
\frac{x-a}{x-b}=\frac{ay-1}{by-1},\\[1ex]
\frac{x-a}{a-b}=\frac{ay-1}{by-ay},\\[1ex]
x-a=\frac{ay-1}{-y},\\[1ex]
xy=1.
\end{gather*} 得证.
isee=freeMaths@知乎

3211

Threads

7832

Posts

52

Reputation

Show all posts

hbghlyj posted 2023-3-5 19:21

Comment

弄一个等轴双曲线的淘专辑?  posted 2023-3-5 20:44

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2023-3-5 19:44
hbghlyj 发表于 2023-3-5 19:21
又见https://kuing.cjhb.site/forum.php?mod=redirect&goto=findpost&ptid=6411&pid=32977
垂心组都跟团来了😀
isee=freeMaths@知乎

6

Threads

55

Posts

5

Reputation

Show all posts

Ly-lie posted 2023-3-5 21:05
取$U,V$为渐近线方向无穷远点,由$ [AB,AC;AU,AV]=[CH,BH;AV,AU]=[HB,HC;HU,HV] $得证

3211

Threads

7832

Posts

52

Reputation

Show all posts

hbghlyj posted 2023-3-5 21:31
通俗数学名著译丛 圆锥曲线的几何性质(英)科克肖特, 沃尔特斯 ; Translated by, 蒋声 ; Publisher, 上海教育出版社, 2002
原书 185页
中译 172页
1-min.png
328. 设三角形 $A B C$ 内接于一条直角双曲线. 求证: 它的垂心 $P$ 也在这条双曲线上.
如果通过 $P$ 作弦 $P A^{\prime}, P B^{\prime}, P C^{\prime}$ 平行于三角形的边, 证明 $A A^{\prime}, B B^{\prime}$, $C C^{\prime}$ 平行. (Joh. 1886.)

19

Threads

44

Posts

0

Reputation

Show all posts

O-17 posted 2023-3-6 06:15
这篇知乎专栏里面有三种证法(解析几何,射影几何,平面几何)
zhuanlan.zhihu.com/p/433706450

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 05:49 GMT+8

Powered by Discuz!

Processed in 0.019669 seconds, 47 queries