|
战巡
posted 2025-7-26 19:23
挺简单的吧......
(1)、
一看就有
\[f(x)=2\arctanh(x)-a\]
一眼递增
(2)、
显然$x=0$是个零点,且
\[g'(x)=4x-a\cos(x)\]
\[g'(0)=-a\]
即当$a>0$时,肯定存在$x>0$使得$g(x)<0$,那只要$g(\frac{\pi}{2})>0$就肯定保证有至少第二个零点,此时
\[g(\frac{\pi}{2})=\frac{\pi^2}{2}-a>0\]
\[0<a<\frac{\pi^2}{2}\]
而且当$x\in(-\frac{\pi}{2},0)$时
\[g(x)<0\]
另一边
\[g''(x)=4+a\sin(x)\]
当$a>0,x\in(0,\frac{\pi}{2})$时,恒有
\[g''(x)>0\]
或者说$g'(x)$恒递增,顶多一个零点,因此$g(x)$是不会出现第三个或更多零点的
同理当$a<0$时会得到
\[-\frac{\pi^2}{2}<a<0\]
综合就是
\[a\in(-\frac{\pi^2}{2},\frac{\pi^2}{2}),a\ne 0\]
(3)、
如此有
\[g(x_2)=2x_2^2-a\sin(x_2)=0\]
\[a=\frac{2x_2^2}{\sin(x_2)}\]
另一边
\[f(x_1)=2\arctanh(x_1)-a=0\]
\[x_1=\tanh(\frac{a}{2})=\tanh(\frac{x_2^2}{\sin(x_2)})\]
于是问题就变成了证明
\[\tanh(\frac{x_2^2}{\sin(x_2)})<\sin(x_2)\]
\[x_2^2<\sin(x_2)\arctanh(\sin(x_2))\]
接下来可就是硬功夫了
令
\[h(x)=x^2-\sin(x)\arctanh(\sin(x))\]
\[h'(x)=2x-\arctanh(\sin(x))\cos(x)-\tan(x)\]
这个不好判断,继续求导
\[h''(x)=\sin(x)\left[\arctanh(\sin(x))-\frac{\tan(x)}{\cos(x)}\right]\]
这个仍然不好判断,但其正负明显取决于
\[\arctanh(\sin(x))-\frac{\tan(x)}{\cos(x)}\]
此处换元令$\sin(x)=y$,会变成
\[\arctanh(y)-\frac{y}{1-y^2}\]
然后
\[\frac{d}{dy}\left[\arctanh(y)-\frac{y}{1-y^2}\right]=-\frac{2y^2}{(1-y^2)^2}\le 0\]
又
\[\arctanh(0)-\frac{0}{1-0^2}=0\]
故$x>0$时,如果加上$h''(0)=h'(0)=h(0)=0$,就有
\[h''(x)<0\]
\[h'(x)<0\]
\[h(x)<0\]
这就出来了 |
|