Forgot password
 Register account
View 2698|Reply 4

[函数] 导数题

[Copy link]

2

Threads

7

Posts

0

Reputation

Show all posts

心语 posted 2013-10-2 16:47 |Read mode
Last edited by hbghlyj 2025-3-22 23:26已知函数 $f(x)=e^x-x-1$
(1)当 $x \geq 0$ 时,求证:$f(x) \geq f(-x)$
(2)$x \inR$,恒有 $|f(x)| \leq mx^2 e^{\abs x}$,求实数 $m$ 的范围

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-10-2 17:37
由(1)只需考虑$x\geqslant0$即可,$m\geqslant\dfrac12$?充分性的证明要反复求导啊!
必要性是罗比达,或者泰勒展式。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-10-2 18:42
回复 2# 其妙

别用极限,搞个类似于通常那些参考答案那样的出来试试?

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-10-2 19:14
回复  其妙

别用极限,搞个类似于通常那些参考答案那样的出来试试?
kuing 发表于 2013-10-2 18:42
充分性已说,
必要性就在$x=0$附近取一小段$[0,\delta ]$即可,只是$\delta $需要技术,

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-10-2 20:10
充分性已说,
必要性就在$x=0$附近取一小段$[0,\delta ]$即可,只是$\delta $需要技术, ...
其妙 发表于 2013-10-2 19:14
这个还算简单,不用什么技术,假设 $m=1/2-t$, $t\in(0,1/2)$,求二阶导后令其为零易知判别式大于0且两根异号,取那个 $\delta$ 为正根即可。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-22 15:30 GMT+8

Powered by Discuz!

Processed in 0.019877 seconds, 44 queries