Forgot password
 Register account
View 2525|Reply 9

[组合] 一个组合题

[Copy link]
转化与化归 posted 2016-6-29 07:53 |Read mode
Last edited by hbghlyj 2025-3-21 23:46设 $(1+x)^{10}=a_0+a_1 x+a_2 x^2+\cdots+a_{10} x^{10}$, 则 $\sum_{k=1}^{10} \frac{a_k}{k}=$   

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2016-6-29 12:56
\[\sum_{k=1}^{10}\frac{a_k}{k}=\int_0^1\frac{(1+x)^{10}-a_0}{x}dx=...\]

1

Threads

15

Posts

0

Reputation

Show all posts

f(x) posted 2016-6-30 00:46
还可以组合数性质

81

Threads

434

Posts

12

Reputation

Show all posts

tommywong posted 2016-7-11 10:03
算不出来,倒是能变一下式

$\displaystyle \sum_{k=1}^n \frac{C_n^k}{k}=\sum_{k=1}^n \frac{2^k-1}{k}$

205

Threads

263

Posts

1

Reputation

Show all posts

hjfmhh posted 2016-7-13 17:55
回复 6# tommywong


    写出来学习一下

81

Threads

434

Posts

12

Reputation

Show all posts

tommywong posted 2016-7-13 21:24
回复 7# hjfmhh

$\displaystyle \sum_{k=1}^n \frac{C_n^k}{k}=\frac{1}{n}+\sum_{k=1}^{n-1}\frac{C_{n-1}^k+C_{n-1}^{k-1}}{k}$

$\displaystyle =\frac{1}{n}+\sum_{k=1}^{n-1} \frac{C_{n-1}^k}{k}+\frac{1}{n}\sum_{k=1}^{n-1}C_n^k=\sum_{k=1}^{n-1}\frac{C_{n-1}^k}{k}+\frac{2^n-1}{n}$

205

Threads

263

Posts

1

Reputation

Show all posts

hjfmhh posted 2016-7-14 11:26
回复 8# tommywong

这个感觉还是直接算方便

422

Threads

911

Posts

0

Reputation

Show all posts

lemondian posted 2020-6-11 09:34
回复 2# 战巡

请问:2#右边积分后的原函数是什么呀?不会呀!

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2020-6-11 13:56
回复 10# lemondian

`x+\frac12(1+x)^2+\frac13(1+x)^3+\cdots+\frac1{10}(1+x)^{10}+C`
所以就是 6# 的结果。

422

Threads

911

Posts

0

Reputation

Show all posts

lemondian posted 2020-6-11 16:10
回复 11# kuing
谢谢!
那这个1#的求值也只能一项项加了。。。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:36 GMT+8

Powered by Discuz!

Processed in 0.019326 seconds, 44 queries