|
kuing
Posted 2016-9-24 21:15
总感觉做复杂了……
\(\newcommand\relph{\mathrel{\phantom=}}\)
记 $p=\cos x+i\sin x$,则
\[\sum_{k=0}^n(-1)^kC_n^k\cos\bigl((k+1)x\bigr)
=\sum_{k=0}^n(-1)^kC_n^k\frac{p^{k+1}+p^{-k-1}}2
=\frac12p(1-p)^n+\frac12p^{-1}(1-p^{-1})^n,\]
因为
\begin{align*}
1-p&=1-\cos x-i\sin x
=2\sin \frac x2\left( \sin \frac x2-i\cos \frac x2 \right)
=2\sin \frac x2\left( \cos \frac{x-\pi}2+i\sin \frac{x-\pi}2 \right), \\
1-p^{-1}&=1-\cos x+i\sin x
=2\sin \frac x2\left( \sin \frac x2+i\cos \frac x2 \right)
=2\sin \frac x2\left( \cos \frac{\pi-x}2+i\sin \frac{\pi-x}2 \right),
\end{align*}
于是
\begin{align*}
\frac12p(1-p)^n+\frac12p^{-1}(1-p^{-1})^n
&=\frac12(\cos x+i\sin x)\cdot 2^n\sin^n\frac x2\left( \cos \frac{n(x-\pi)}2+i\sin \frac{n(x-\pi)}2 \right) \\
&\relph {}+\frac12(\cos x-i\sin x)\cdot 2^n\sin^n\frac x2\left( \cos \frac{n(\pi-x)}2+i\sin \frac{n(\pi-x)}2 \right) \\
&=2^n\sin^n\frac x2\left( \cos \frac{n(x-\pi)}2\cos x -\sin \frac{n(x-\pi)}2\sin x \right) \\
&=2^n\sin^n\frac x2\cos \left( \frac{n(x-\pi)}2+x \right),
\end{align*}
所以最终化简结果为
\[\sum_{k=0}^n(-1)^kC_n^k\cos\bigl((k+1)x\bigr)
=2^n\sin^n\frac x2\cos \frac{(n+2)x-n\pi}2.\] |
|