Forgot password
 Register account
View 1829|Reply 5

[组合] 组合数求和

[Copy link]

92

Threads

89

Posts

0

Reputation

Show all posts

aishuxue posted 2018-3-4 12:35 |Read mode
已知$n$为偶数,
求证:$\dfrac{1}{C_n^n}-\dfrac{1}{C_n^{n-1}}+\dfrac{1}{C_n^{n-2}}-\dfrac{1}{C_n^{n-3}}+\cdots+\dfrac{1}{C_n^2}-\dfrac{1}{C_n^1}=\dfrac{n}{n+2}$

92

Threads

89

Posts

0

Reputation

Show all posts

original poster aishuxue posted 2018-3-4 12:36
我尝试用数学归纳法,没想出来!

81

Threads

434

Posts

12

Reputation

Show all posts

tommywong posted 2018-3-4 12:54
$\displaystyle\frac{1}{C^n_k}=\frac{n+1}{n+2}\left(\frac{1}{C^{n+1}_k}+\frac{1}{C^{n+1}_{k+1}}\right)$

92

Threads

89

Posts

0

Reputation

Show all posts

original poster aishuxue posted 2018-3-4 13:01
怎么想到的?
用数学归纳法可好证明?

81

Threads

434

Posts

12

Reputation

Show all posts

tommywong posted 2018-3-4 13:13
回复 4# aishuxue

想不到的,我只是记得它有裂项然后抄出来而已

封闭形和式初步有记载这块垃圾

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2018-3-4 13:18

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:11 GMT+8

Powered by Discuz!

Processed in 0.016456 seconds, 43 queries