Forgot password
 Register account
View 1695|Reply 3

[几何] 抛物线切线构成三角形的面积

[Copy link]

209

Threads

949

Posts

2

Reputation

Show all posts

敬畏数学 posted 2019-1-12 08:07 |Read mode
已知抛物线C:$ y^2=4x $,直线l:$ x-y+1=0 $,F为C的焦点,P为l上一点,过P作抛物线的一条切线交y轴于Q,则$ \triangle PQF  $的外接圆面积最小值为

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2019-1-12 14:41
根据《撸题集》第 54 页定理 1.2.1 及推论 1.2.1.1 可知此题中 `PF` 为外接圆直径,所以其面积最小时 `PF\perp l`,即只需求 `F` 到 `l` 的距离,显然为 `d=\sqrt2`,因此 `S_{\min}=\pi(d/2)^2=\pi/2`。

209

Threads

949

Posts

2

Reputation

Show all posts

original poster 敬畏数学 posted 2019-1-13 10:43
回复 2# kuing
貌似有个名字称呼“阿基米德三角形”!感谢!

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2019-1-13 12:48
回复 3# 敬畏数学

这个和那个没关系吧

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:27 GMT+8

Powered by Discuz!

Processed in 0.019638 seconds, 43 queries