Forgot password?
 Register account
View 1660|Reply 2

[几何] 抛物线

[Copy link]

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

lrh2006 Posted 2020-6-26 10:58 |Read mode
抛物线y2=2px(p>0)的准线交x轴于点C,焦点为F,过点C的直线l与抛物线交于不同两点A,B,点A在点B,C之间,则(  )
A.AF*AB=BF2     B.AF+AB=2BF   C.AF*AB>BF2       D.AF+AB<2BF
答案是D,请教各位,谢谢啦

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-6-26 16:12
设 `A`, `B` 在准线上的投影为 `A'`, `B'`,设 `l` 与 `x` 轴的夹角为 `\theta`,易知当 $\theta=45\du$ 时 `l` 与抛物线相切,所以 $\theta<45\du$,而
\[BF=BB'=AA'+AB\cos\theta=AF+AB\cos\theta>AF+\frac{\sqrt2}2AB,\]即得比选项 D 更强的结果 `2BF>2AF+\sqrt2AB`。

PS、懒得作图,或有空再补……

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

 Author| lrh2006 Posted 2020-6-26 17:57
回复 2# kuing


    懂了懂了,谢谢啦

Mobile version|Discuz Math Forum

2025-5-31 11:21 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit