Forgot password
 Register account
View 1671|Reply 2

[几何] 抛物线

[Copy link]

167

Threads

381

Posts

5

Reputation

Show all posts

lrh2006 posted 2020-6-26 10:58 |Read mode
抛物线y2=2px(p>0)的准线交x轴于点C,焦点为F,过点C的直线l与抛物线交于不同两点A,B,点A在点B,C之间,则(  )
A.AF*AB=BF2     B.AF+AB=2BF   C.AF*AB>BF2       D.AF+AB<2BF
答案是D,请教各位,谢谢啦

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2020-6-26 16:12
设 `A`, `B` 在准线上的投影为 `A'`, `B'`,设 `l` 与 `x` 轴的夹角为 `\theta`,易知当 $\theta=45\du$ 时 `l` 与抛物线相切,所以 $\theta<45\du$,而
\[BF=BB'=AA'+AB\cos\theta=AF+AB\cos\theta>AF+\frac{\sqrt2}2AB,\]即得比选项 D 更强的结果 `2BF>2AF+\sqrt2AB`。

PS、懒得作图,或有空再补……

167

Threads

381

Posts

5

Reputation

Show all posts

original poster lrh2006 posted 2020-6-26 17:57
回复 2# kuing


    懂了懂了,谢谢啦

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:25 GMT+8

Powered by Discuz!

Processed in 0.016820 seconds, 43 queries