Forgot password?
 Register account
View 1759|Reply 0

[函数] 两个导数证明题

[Copy link]

4

Threads

0

Posts

0

Reputation

Show all posts

chaijining posted 2021-3-18 16:30 |Read mode
Last edited by hbghlyj 2025-5-29 23:39
  • $\begin{aligned}
    f(x)&=a e^{2 x}+(a-2) e^x-x \\
    f(x_1)&=f(x_2)=0 \quad(x_1<x_2)
    \end{aligned}$
    pro:(from Mr wang)
    (1)$0<x_1+x_2<-\ln a, x_1 x_2>\frac{4}{3} \ln a$
    (2)$x_1+x_2+x_1 x_2<0$
  • 设函数 $f_n(x)=e^x-\left(1+x+\frac{1}{2!} x^2+\frac{1}{3!} x^3+\cdots+\frac{1}{n!} x^n\right)$,若 $k \inZ$
    I:求函数 $f_1(x)$ 和 $f_2(x)$ 的单调区间,分析 $f_n(x)$ 的单调性。
    II:求证 $f_{2 k-1}(x)=1$ 有两个根 $a_{2 k-1}, b_{2 k-1}$
    III:记 II 中的零点为 $a_{2 k-1}>0, b_{2 k-1}<0$,求证:$a_{2 k+1}>a_{2 k-1}$ 且 $b_{2 k-1}>b_{2 k+1}$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 10:32 GMT+8

Powered by Discuz!

Processed in 0.020571 second(s), 27 queries

× Quick Reply To Top Edit