Forgot password?
 Register account
View 1568|Reply 3

[函数] 利用构造函数比较大小

[Copy link]

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2021-3-29 11:27 |Read mode
$ f(x) $是定义在$ (0,+\infty ) $的可导函数,且$ f(x)>0,f(x)+f'(x)<0,0<a<1<b,ab=1 $,下列不等式一定成立的:$ (A)f(a)>(a+1)f(b) ;  (B)f(b)>(1-a)f(a);  (C)af(a)>bf(b);(D)af(b)>bf(a); $

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-3-29 12:44
`F(x)=e^xf(x)`

`F'(x)=e^x[f(x)+f'(x)]<0`

`e^af(a)>e^bf(b)`

`f(a)>\exp(b-1/b)f(b)\geqslant \exp(2\ln b)f(b)=b^2f(b)`

`af(a)>bf(b)`

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

 Author| 敬畏数学 Posted 2021-3-29 16:51
利用不等式:$ lnx<\dfrac{1}{2}(x-\dfrac{1}{x}),x>1 .$或者$ 1=\sqrt{ab}<\dfrac{b-a}{lnb-lna}=\dfrac{lne^{b-a}}{ln\frac{b}{a}}$

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

facebooker Posted 2021-3-29 17:00
变着法的考ALG啊

Mobile version|Discuz Math Forum

2025-5-31 11:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit