Forgot password?
 Create new account
View 595|Reply 6

UTM Groups and Symmetry习题求助

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2021-12-17 05:54:18 |Read mode
Last edited by hbghlyj at 2023-3-12 01:13:006.6   H是Sn的子群且H$\not\subset$An,证明:H中恰有一半的元素为偶置换.
6.10   $α,β∈S_n,αβ=βα$,证明置换$α$的不动元素在置换$β$下都会改变.当$α$是一个$n$-轮换,则$β$必为$α$的幂. (MSE)
10.8   The element (ε,1) of An×$\mathbb Z$2 commutes with every element of An×$\mathbb Z$2. Use this observation to prove that An×$\mathbb Z$2 is not isomorphic to Sn when n≥3.

17

Threads

93

Posts

1353

Credits

Credits
1353

Show all posts

yao4015 Posted at 2021-12-21 11:02:05
回复 1# hbghlyj

关于 6.6,  我查了一下原文,是这样说的
"If $H$ is a subgroup of $S_n$, and if $H$ is not contained  in $A_n$, prove that precisely one-half of the elements of $H$ are even permutations."

楼主的表述 “$ H \subsetneq A_n$” 应该是 “$H\not \subset A_n$”.

设 $H_{1}, H_{0}$ 分别是 $H$ 中奇置换与偶置换组成的集合. 取一个奇置换 $a\in H_{1}$,  由封闭性有
\[
a H_{1}\subseteq H_{0}.
\]
根据消去律,可知 $|H_1|=|a H_{1}|\leqslant |H_{0}|$. 同样的 $a H_{0}\subseteq H_{1}$, 可知$|H_0|=|a H_{0}|\leqslant |H_{1}|$.
所以 $|H_0|=|H_{1}|$。

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2021-12-22 00:48:38
Last edited by hbghlyj at 2022-4-16 00:53:00回复 2# yao4015
回复 4# Czhang271828
哦哦..是我打错了已改正,谢谢

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2022-1-26 18:59:59
T10. 若 $S_n=S_4$ $\alpha=(12)$, $\beta=(12)(34)$, 则 $\alpha\beta=\beta\alpha$. 题目确定没问题?

T16. 此题的思路可以是这样: 若 $S_n\cong A_n\times\mathbb Z_2$, 取 $(1,-1)\in S_n$, 显然 $(1,-1)$ 与 $A_n\times \mathbb Z_2$ 中任何元素可交换, 从而置换群中心 $C(S_n)$ 中含有非平凡元 $\sigma$. 由于 $\sigma^2=(1,1)=e$, 从而 $\sigma$ 为若干不交对换之积 (置换群中元素均可唯一地写作若干不交轮换之积).

($n\geq 3$) 若 $\sigma=(ab)$, 则 $(abc)(ab)\neq(ab)(abc)$, 矛盾. 若 $\sigma=(ab)(cd)(\cdots)$, 则仅需考虑 $\sigma=(ab)(cd)$ 之情形. 注意到 $(ab)(cd)(abc)\neq (abc)(ab)(cd)$, 从而 $S_n\cong A_n\neq\times\mathbb Z_2$.

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2022-2-16 23:13:43
Last edited by hbghlyj at 2022-4-15 22:54:00 Screenshot 2022-02-16 151234.png
设$a$为$\alpha$的不动元素,即$\alpha(a)=a$.
$\beta(a)=(\alpha\beta\alpha^{-1})(a)=(\alpha\beta)(a)$
因此$\beta(a)$为$\alpha$的不动元素.
因此$\beta(a)\ne a$.
即“任何$\alpha$的不动元素$a$在$\beta$下改变”.
证毕.

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2023-6-4 05:18:25
6.10. If $\alpha, \beta \in S_n$ and if $\alpha \beta=\beta \alpha$, prove that $\beta$ permutes those integers which are left fixed by $\alpha$. Show that $\beta$ must be a power of $\alpha$ when $\alpha$ is an $n$-cycle.

这是在 2009 年讨论的:physicsforums.com/threads/if-two-permutations … are-disjoint.365573/

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2023-6-4 05:20:16

When do permutations commute?

MSE
the cycles (1,2,3) and (2,3,4) have the same cycle structure but do not commute.

手机版Mobile version|Leisure Math Forum

2025-4-20 22:28 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list