Forgot password?
 Register account
View 334|Reply 5

[不等式] 怎么配凑非负系数SOS

[Copy link]

16

Threads

18

Posts

329

Credits

Credits
329

Show all posts

Canhuang Posted 2023-3-18 17:22 |Read mode
$\mathbb{R_+}: \frac{3(a^2+b^2+c^2)}{a+b+c}\geqslant \sum \frac{a^2+b^2}{a+b}$
有个大致的过程啥的

3163

Threads

7940

Posts

610K

Credits

Credits
64298
QQ

Show all posts

hbghlyj Posted 2023-3-18 17:46
$\LHS-\RHS=\frac1{a+b+c}\sum\left(\frac{1}{2}-\frac{a^2}{(a+b) (a+c)}\right)(b-c)^2$
  1. (1/2-a^2/((a+b) (a+c)))(b-c)^2/(a+b+c)-((a^2+b^2+c^2)/(a+b+c)-(a^2+b^2)/(a+b))/.{{},{a->b,b->c,c->a},{b->a,c->b,a->c}}//Total//Factor
Copy the Code

687

Threads

110K

Posts

910K

Credits

Credits
91253
QQ

Show all posts

kuing Posted 2023-3-18 18:13
这题我去年在知乎撸过,恰好就是用 SOS 方法😉,见:
zhihu.com/question/548200393/answer/2624555512

3163

Threads

7940

Posts

610K

Credits

Credits
64298
QQ

Show all posts

hbghlyj Posted 2023-3-18 18:23
2#的$\sum\left(\frac{1}{2}-\frac{a^2}{(a+b) (a+c)}\right)(b-c)^2$加上$\sum\frac{(a-b)(a-c)}{(a+b) (a+c)}=0$化为3#的$\sum\frac{bc}{(a+b) (a+c)}(b-c)^2$

19

Threads

44

Posts

409

Credits

Credits
409
QQ

Show all posts

O-17 Posted 2023-3-19 15:03
干脆直接全部乘开...
\begin{gather*}
3\left(\prod(a+b)\right)\left(\sum a^2\right)\geqslant\left(\sum a\right)\left(\sum(b+c)(c+a)(a^2+b^2)\right)\\
\Leftrightarrow\sum(a^4c+a^4b)\geqslant\sum(a^3b^2+a^3c^2)\\
\Leftrightarrow\sum ab(a+b)(a-b)^2\geqslant0~~~.\square
\end{gather*}

Comment

😄  Posted 2023-3-19 15:11

Mobile version|Discuz Math Forum

2025-6-4 00:21 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit