Forgot password?
 Create new account
View 243|Reply 8

[几何] 圆环在倾斜平面上的投影的外轮廓

[Copy link]

3147

Threads

8496

Posts

610K

Credits

Credits
66178
QQ

Show all posts

hbghlyj Posted at 2023-7-25 06:35:30 |Read mode
Last edited by hbghlyj at 2023-7-26 01:02:00
圆环在倾斜平面上的投影的外轮廓是椭圆吗? Tesseract_torus.png

Mathcurve.com

Surfaces and their Profile Curves
Joel Hass
    This paper examines the relationship between a profile curve of a surface in 3 dimensions and the isotopy class of the surface.

isometric orthographic projection on the half of the torus

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2023-7-25 13:58:32
圆环在倾斜平面上的投影的外轮廓是椭圆吗?

很明显不是。

注意到当圆环竖起来时投影外轮廓是个“操场跑道形”:
,然后让圆环稍微歪一点点,它不可能由一个跑道瞬间变成个椭圆。

3147

Threads

8496

Posts

610K

Credits

Credits
66178
QQ

Show all posts

 Author| hbghlyj Posted at 2023-7-25 19:32:00
kuing 发表于 2023-7-25 13:58
很明显不是。

注意到当圆环竖起来时投影外轮廓是个“操场跑道形”:,然后让圆环稍微歪一点点,它不可能由 ...

一般的它是几次代数曲线呢?

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2023-7-25 21:27:30
hbghlyj 发表于 2023-7-25 19:32
一般的它是几次代数曲线呢?
不知道😌超出我能力范围

3147

Threads

8496

Posts

610K

Credits

Credits
66178
QQ

Show all posts

 Author| hbghlyj Posted at 2023-7-26 00:58:40
kuing 发表于 2023-7-25 13:58
很明显不是。

注意到当圆环竖起来时投影外轮廓是个“操场跑道形”:,然后让圆环稍微歪一点点,它不可能由 ...
四次曲线?
Mathworld Spiric Section
spiricr.gif
Wikipedia Spiric Section
1000px-Torus-spir.svg.png

3147

Threads

8496

Posts

610K

Credits

Credits
66178
QQ

Show all posts

 Author| hbghlyj Posted at 2023-7-26 04:34:33
Last edited by hbghlyj at 2023-7-26 06:34:00
kuing 发表于 2023-7-25 21:27
不知道😌超出我能力范围

圆环\begin{equation}\label{torus}(\sqrt{x^2+y^2}-2)^2+z^2=1\end{equation}(关于$y$轴旋转45°)作代换$(x, y, z)⟶\left({x + z\over\sqrt2}, y, {z - x\over\sqrt2}\right)$得\begin{equation}\left(\sqrt{\left(x + z\over\sqrt2\right)^2+y^2}-2\right)^2+\left(z - x\over\sqrt2\right)^2=1\label{transformed torus}\end{equation}
令LHS关于$z$的偏导等于$0$得$$\frac{{\left(x + z\right)} {\left(\sqrt{\frac{1}{2} \, {\left(x + z\right)}^{2} + y^{2}} - 2\right)}}{\sqrt{\frac{1}{2} \, {\left(x + z\right)}^{2} + y^{2}}} - x + z=0$$

\begin{equation}\label{profile}
\frac{x+z}z=\sqrt{\frac{1}{2} \, (x+z)^{2} + y^{2} }
\end{equation}
从\eqref{transformed torus}与\eqref{profile}消去$z$得
WolframAlpha\begin{equation}\label{result}4 x^8 + 12 x^6 (y^2 - 1) + x^4 (13 y^4 - 62 y^2 - 59) + 6 x^2 (y^2 - 7) (y^2 - 1)^2 + (y^2 - 9) (y^2 - 1)^3 = 0\end{equation}
Untitled.gif

3147

Threads

8496

Posts

610K

Credits

Credits
66178
QQ

Show all posts

 Author| hbghlyj Posted at 2023-7-26 06:33:28
Last edited by hbghlyj at 2023-7-26 07:00:00椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$作代换$(x^2,y^2)⟶(x,y)$得直线$\frac{x}{a^2}+\frac{y}{b^2}=1$。
将\eqref{result}作代换$(x^2,y^2)⟶(x,y)$得WolframAlpha
Untitled.gif
它有2个分支,其中一个很接近直线呢!但它不是直线WolframAlpha
Untitled.gif
作逆代换$(x,y)⟶(x^2,y^2)$得很接近的椭圆WolframAlpha
Untitled.gif

3147

Threads

8496

Posts

610K

Credits

Credits
66178
QQ

Show all posts

 Author| hbghlyj Posted at 2023-7-26 06:57:12
\eqref{result}是\eqref{torus}在(1,0,1)方向的投影,这个方向的外轮廓在同一平面内吗?

3147

Threads

8496

Posts

610K

Credits

Credits
66178
QQ

Show all posts

 Author| hbghlyj Posted at 2023-7-26 08:25:07
Last edited by hbghlyj at 2023-7-26 08:31:00
hbghlyj 发表于 2023-7-26 06:57
\eqref{result}是\eqref{torus}在(1,0,1)方向的投影,这个方向的外轮廓在同一平面内吗? ...
曲线可以参数化为$\led
x&=-\sqrt2(\sin t +\tan t)\\
y&=\pm(1+2\sec t)\sqrt{\cos2t}\\
z&=-\sqrt2\tan t
\endled$
所以不在同一平面内。

手机版Mobile version|Leisure Math Forum

2025-4-21 01:20 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list