Forgot password?
 Create new account
View 449|Reply 1

[数列] 阶乘 证明整除

[Copy link]

3156

Threads

7935

Posts

610K

Credits

Credits
63672
QQ

Show all posts

hbghlyj Posted 2025-5-3 16:36 |Read mode
6514. Proposed by Richard Askey, University of Wisconsin, Madison.
Show that
$$\frac{(3m + 3n)!(3n)!(2m)!(2n)!}{(2m + 3n) !(m + 2n) !(m + n)!m!n!n!}\inZ$$for $m, n=0,1, \ldots$.

3156

Threads

7935

Posts

610K

Credits

Credits
63672
QQ

Show all posts

 Author| hbghlyj Posted 2025-5-3 17:12
$f(m,n)$没有递推
一般证法:由thread-7666-1-1.html只需证$\forall x,y\in[0,1):[3x+3y]+[3y]+[2x]+[2y]\ge[2x+3y]+[x+2y]+[x+y]+[x]+2[y]$

Mobile version|Untroubled Math Forum

2025-5-21 17:50 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit