Forgot password?
 Create new account
View 412|Reply 1

[数列] f(n,m)递推 阶乘

[Copy link]

3156

Threads

7935

Posts

610K

Credits

Credits
63672
QQ

Show all posts

hbghlyj Posted 2025-5-3 16:52 |Read mode
$f(n,m)=\frac{(2n)!(2m)!}{n!(n+m)!m!}\inZ$
证明:对$n$归纳:
当$n=0$时$f(0,m)=\binom{2m}{m}\inZ$.
假设$f(i,j)\inZ$,
$$f(i+1,j)=\frac{(2(i+1))!(2j)!}{(i+1)!(i+1+j)!(j)!}=\frac{(2i+2)(2i+1)(2i)! (2j)!}{(i+1)i! (i+j+1)(i+j)! j!}=\frac{2(2i+1)}{i+j+1} \cdot \frac{(2i)!(2j)!}{i!(i+j)!j!}$$
$$4f(i,j)-f(i,j+1)=4\cdot\frac{(2i)!(2j)!}{i!(i+j)!j!} - \frac{(2i)!(2(j+1))!}{i!(i+j+1)!(j+1)!}=(4 - \frac{2(2j+1)}{i+j+1})\frac{(2i)!(2j)!}{i!(i+j)!j!}$$两边相等,说明$f(i+1,j)=4f(i,j)-f(i,j+1)\inZ$.

3156

Threads

7935

Posts

610K

Credits

Credits
63672
QQ

Show all posts

 Author| hbghlyj Posted 2025-5-3 17:10
一般证法:由thread-7666-1-1.html只需证$\forall x,y\in[0,1):[2x]+[2y]\ge[x]+[y]+[x+y]$

Mobile version|Untroubled Math Forum

2025-5-21 17:42 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit