Forgot password
 Register account
View 421|Reply 1

[数列] f(n,m)递推 阶乘

[Copy link]

3204

Threads

7842

Posts

48

Reputation

Show all posts

hbghlyj posted 2025-5-3 16:52 |Read mode
$f(n,m)=\frac{(2n)!(2m)!}{n!(n+m)!m!}\inZ$
证明:对$n$归纳:
当$n=0$时$f(0,m)=\binom{2m}{m}\inZ$.
假设$f(i,j)\inZ$,
$$f(i+1,j)=\frac{(2(i+1))!(2j)!}{(i+1)!(i+1+j)!(j)!}=\frac{(2i+2)(2i+1)(2i)! (2j)!}{(i+1)i! (i+j+1)(i+j)! j!}=\frac{2(2i+1)}{i+j+1} \cdot \frac{(2i)!(2j)!}{i!(i+j)!j!}$$
$$4f(i,j)-f(i,j+1)=4\cdot\frac{(2i)!(2j)!}{i!(i+j)!j!} - \frac{(2i)!(2(j+1))!}{i!(i+j+1)!(j+1)!}=(4 - \frac{2(2j+1)}{i+j+1})\frac{(2i)!(2j)!}{i!(i+j)!j!}$$两边相等,说明$f(i+1,j)=4f(i,j)-f(i,j+1)\inZ$.

3204

Threads

7842

Posts

48

Reputation

Show all posts

original poster hbghlyj posted 2025-5-3 17:10
一般证法:由thread-7666-1-1.html只需证$\forall x,y\in[0,1):[2x]+[2y]\ge[x]+[y]+[x+y]$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-5 22:57 GMT+8

Powered by Discuz!

Processed in 0.034125 seconds, 43 queries