Forgot password?
 Create new account
View 1735|Reply 5

2015年全国高中数学联赛陕西预赛二试第六题

[Copy link]

4

Threads

14

Posts

111

Credits

Credits
111

Show all posts

yhg1970 Posted at 2015-4-22 11:51:20 |Read mode
Last edited by hbghlyj at 2025-3-21 07:04:01设 $[x]$ 表示不超过实数 $x$ 的最大整数.已知 $a_k=\frac{1}{k^2}+\frac{1}{k^2+1}+\frac{1}{k^2+2}+\cdots+\frac{1}{(k+1)^2-1},k=1,2, \cdots$,求和 $\sum_{k=1}^n\left(\left[\frac{1}{a_k}\right]+\left[\frac{1}{a_k}+\frac{1}{2}\right]\right)$

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2015-4-22 15:01:53
回复 1# yhg1970


\[\int_{k^2}^{(k+1)^2}\frac{dx}{x}<a_k=\sum_{i=0}^{2k}\frac{1}{k^2+i}<\int_{k^2-1}^{(k+1)^2-1}\frac{dx}{x}\]
\[\frac{2}{k+1}<2\ln(1+\frac{1}{k})<a_k<\ln(\frac{k(k+2)}{(k+1)(k-1)})\]

另一方面:

\[f(k)=\ln(\frac{k(k+2)}{(k+1)(k-1)})-\frac{2}{k}\]
\[f'(k)=\frac{2(k^2-2k-2)}{(k-1)k^2(k+1)(k+2)}>0\]
得:
\[k>1+\sqrt{3}\]
而易证
\[\lim_{k\to\infty}f(k)=0\]
验证得$k>1$时都有$f(k)<0$
于是对$k>1$,都有:
\[\frac{2}{k+1}<a_k<\frac{2}{k}\]
剩下应该不用再说了

4

Threads

14

Posts

111

Credits

Credits
111

Show all posts

 Author| yhg1970 Posted at 2015-4-22 16:47:11
谢谢战巡相助,确实是专业水平手到擒来。
我曾经想到过用积分法分析调和级数的部分和,但能力有限做不下去。

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2015-4-25 15:52:25
回复 2# 战巡

4

Threads

14

Posts

111

Credits

Credits
111

Show all posts

 Author| yhg1970 Posted at 2015-6-3 09:51:54
Last edited by hbghlyj at 2025-3-21 07:08:30官方解答,刊载于《中学数学教学参考》2015年第5期上旬刊
解题过程利用了Hermite恒等式
对正整数 $n$ 及一切实数 $x,[x]+\left[x+\frac{1}{n}\right]+\left[x+\frac{2}{n}\right]+\cdots+\left[x+\frac{n-1}{n}\right]=[n x]$ .
特别地,当 $n=2$ 时有 $[x]+\left[x+\frac{1}{2}\right]=[2 x]$ .

剪贴板-2.gif

4

Threads

14

Posts

111

Credits

Credits
111

Show all posts

 Author| yhg1970 Posted at 2015-6-3 09:55:46
百度了一下Hermite的资料,想起了kuing,太有个性结果被应试教育毁了的孩子。

埃尔米特(Charles Hermite,1822—1901) 法国数学家。巴黎综合工科学校毕业。曾任法兰西学院、巴黎高等师范学校、巴黎大学教授。法兰西科学院院士。在函数论、高等代数、微分方程等方面都有重要发现。1858年利用椭圆函数首先得出五次方程的解。1873年证明了自然对数的底e的超越性。在现代数学各分支中以他姓氏命名的概念(表示某种对称性)很多,如“埃尔米特二次型”、“埃尔米特算子”等。

埃尔米特是十九世纪最伟大的代数几何学家,但是他大学入学考试重考了五次,每次失败的原因都是数学考不好。他的大学读到几乎毕不了业,每次考不好都是数学那一科。他大学毕业后考不上任何研究所,因为考不好的科目还是数学。数学是他一生的至爱,但是数学考试是他一生的恶梦。不过这无法改变他的伟大:课本上的“共轭矩阵”是他先提出来的;自然对数的底的“超越数性质”,在全世界,他是第一个证明出来的人。他的一生证明“一个不会考试的人,仍然能有胜出的人生”,并且更奇妙的是不会考试成为他一生的祝福。

埃尔米特从小就是个问题学生,上课时老爱找老师辩论,尤其是一些基本的问题。他尤其痛恨考试。他在后来的文章中写道:“学问像大海,考试像鱼钩。老师老要把鱼挂在鱼钩上,教鱼怎么能在大海中学会自由、平衡的游泳?”老师看他考不好,就用木条打他的脚,他恨死了。他后来写道:“达到教育的目的是用头脑,又不是用脚。打脚有什么用?打脚可以使人头脑更聪明吗?”他的数学考得特别差,主要原因是他的数学特别好。他讲的话更让数学老师抓狂。他说:“数学课本是一滩臭水,是一堆垃圾。数学成绩好的人,都是一些二流头脑的人,因为他们只懂搬垃圾。”他自命为一流的科学狂人。不过他讲的也没错,历史上最伟大的数学家大多是文学、外交、工程、军事等与数学不相干的科系出身的。埃尔米特花许多时间去看数学大师,如牛顿、高斯的原著。他认为只有在那里才能找到“数学的美,是回到基本点的辩论,那里才能饮到数学兴奋的源头。”他在年老时,回顾少年时的轻狂,写道:“传统的数学教育,要学生按部就班地、一步一步地学习,训练学生把数学应用到工程或商业上,因此,不重视启发学生的开创性。但是数学有它本身抽象逻辑的美,例如在解决多次方方程式里,根的存在本身就是一种美感。数学存在的价值,不只是为了生活上的应用,也不应沦为供工程、商业应用的工具。数学的突破仍需要不断地去突破现有格局。”

埃尔米特的表现让父母忧心。父母但求他能把书念好,再多的钱也愿意付出,就把他送到巴黎的路易大帝中学(Louis-le-Grand)。因着超卓的数学天份,他无法把自己塞入数学教育的窠臼,但是为了顺父母的意,又必须每天面对那些细微繁琐的计算,以致痛苦得不得了。这位孝顺的天才,似乎注定终生的自我折磨。巴黎综合工科技术学院(Polytechnique)入学考每年举行两次。他从十八岁开始参加,考到第五次才以吊车尾的成绩通过。其间他几乎要放弃时,遇到一位数学老师李察(Richard)。李察老师对埃尔米特说:“我相信你是自拉格朗日(Lagrange)以来的第二位数学天才。”拉格朗日被称为数学界的贝多芬,他所作的求根近似解被誉为“数学之诗”。但是埃尔米特光有天份不够,李察老师说:“你需要有上帝的恩典,与完成 学业的坚持,才不会被你认为垃圾的传统教育牺牲掉。”因此他一次又一次地落榜,却仍继续坚持应试。

埃尔米特进技术学院念了一年以后,法国教育当局忽然下一道命令:肢障者不得进入工科学系。埃尔米特只好转到文学系。文学系里的数学已经容易很多了,结果他的数学还是不及格。有趣的是,他同时在法国的数学研究期刊《纯数学与应用数学杂志》发表《五次方方程式解的思索》,震惊了数学界。

在人类历史上,第三世纪的希腊数学家就发现一次方程与二次方程的解法。之后,多少一流数学家埋首苦思四次方程以上到n次方程的解法,始终不得其解。没想到三百年后,一个文学系的学生,一个数学常考不及格的学生,竟然提出正确的解法。埃尔米特知道自己已经“对数学的开创性研究中毒很深,热爱得无法自拔”,幸得好朋友勃特伦(Bertrand)赶忙帮他补习学校要考的数学。对这一个具有开创性的天才,僵化的数学教育带来无边的苦难;惟有友谊的了解与鼓励能够支持他走下去,并使他在二十四岁时,能以及格边缘的成绩自大学毕业。由于不会应付考试,无法继续升学,他只好找所学校做个批改学生作业的助教。这份助教工作,做了几乎二十五年,尽管他这二十五年中发表了代数连分数理论、函数论、方程论……已经名满天下,数学程度远超过当时所有大学的教授,但是不会考试,没有高等学位的埃尔米特,只能继续批改学生作业。社会现实对他就是这么残忍、愚昧。

能够使埃尔米特不愤世嫉俗、坦然前行的动力是什么? 有三个重要的因素。一是妻子的了解与同心。埃尔米特的妻子,是他大学好友勃特伦的妹妹,她无怨无悔地跟随这个不会考试的天才丈夫,一年一年地走下去。二是有人真正地赞赏他,不因他外表的残废与没有耀人的学位而轻视他。欣赏他的人后来也都在数学界享有盛名——包括研究无穷级数收敛、发散与微分方程式而著名的柯西(Cauchy),发表椭圆函数、行列式理论而著名的雅科比(Jacobi),《纯数学与应用数学杂志》的主编刘维尔(Liouville)。这些都是行家,而来自真正行家的惺惺相惜,比考试高分的一点虚伪荣耀,更能支助一个失败者走较远的路。三是埃尔米特的信仰。埃尔米特在四十三岁时染患一场大病,柯西来看他,并且把福音传给他。信仰给他另一种价值与满足。埃尔米特在四十九岁时,巴黎大学才请他去担任教授。此后的二十五年,几乎整个法国的大数学家都出自他的门下。我们无从得知他在课堂上的授课方式,但是有一件事情是可以确定的──没有考试。

不会考试给他带来许多麻烦:工作不顺利,多次重考,他人的轻视,自卑……。但是给他带来许多祝福:认识妻子、好友、信仰,与整个生命的成熟。后来美国加州理工学院数学系的教授贝尔(Bell),在他对历史上数学伟人的回顾上,用一段话描述埃尔米特:“ 历史上的数学家,愈是天才,愈是好讥诮,讲话愈多嘲讽。只有一个人例外,就是埃尔米特。他有真正完美的人格。”埃尔米特死于1901年1月4日。晚年写道:“三角几何是永恒的、不朽的。自然界里没有任何一个东西是绝对的三角形。但是在人的脑中却存在着完美、绝对的三角形,去衡量外面的形形状状。没有人知道为什么三角的总和就是180度,没有人知道为什么三角形的最长边对应最大角。这些三角几何的基本特性,不是人去发明出来或想象出来的,而是人在懵懂无知的时候,这些三角特性就存在,并且无论时空如何改变,这些特性也不会改变。我只不过是一个无意中发现这些特性的人。三角几何的存在,证明有一永久不改变的世界存在。”

埃尔米特是一位热心的数学传播者,他经常无保留地向数学界提供他的知识、想法以至创造性的思维火花,他一般通过书信、便条以及讲演进行这种传播.例如,他与T.J.斯蒂尔切斯(StieltjeS)两人从1882年到1894年间至少写过432封信.只要认真阅读埃尔米特的著作,就会发现,他提供了许多可以作为别人发现的序幕的例子,他的数学传播工作极大地促进了数学的发展.

手机版Mobile version|Leisure Math Forum

2025-4-21 01:29 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list