Forgot password?
 Create new account
View 1746|Reply 2

[数论] 目测kk不会求打脸

[Copy link]

9

Threads

23

Posts

169

Credits

Credits
169

Show all posts

琉璃幻 Posted at 2014-10-16 13:11:01 |Read mode
设$r$是至少为$1$的实数。证明对于任意正整数$m,k$, $[kmr]/[mr]$是整数的充分必要条件是$r$也是整数

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2014-10-16 15:43:36
回复 1# 琉璃幻


这个也不难吧,目测某k也能想出来
$r$为整数时显然$\frac{[kmr]}{[mr]}$为整数,就不废话了

当$\frac{[kmr]}{[mr]}=p\in N^+$时,$mr=[mr]+\{mr\}$,有:
\[k[mr]+[k\{mr\}]=p[mr]\]
\[k+\frac{[k\{mr\}]}{[mr]}=p\]
因为要对任意$k$成立,而当$mr\ge 2$时,若$\{mr\}\ne 0$,必然可以找到一个$k$使得$[k\{mr\}]=1, k+\frac{[k\{mr\}]}{[mr]}$不为整数,也就不对了
所以当$mr\ge 2$时一定有$mr \in N^+$,而加上$m$的任意性,只能是$r\in N^+$

于是当$mr<2$时又当如何?
根本无所谓,反正$m$任取,对任意给定的$r$总能找到$m$使得$mr\ge 2$,所以$r$必须为正整数

9

Threads

23

Posts

169

Credits

Credits
169

Show all posts

 Author| 琉璃幻 Posted at 2014-10-17 08:45:59
回复 2# 战巡

这样就打不到脸咯

手机版Mobile version|Leisure Math Forum

2025-4-21 14:41 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list