Forgot password?
 Register account
View 283|Reply 1

[不等式] $⌊\sqrt n⌋+⌊\sqrt{4n+1}⌋=⌊\frac32⌊\sqrt{4n+1}⌋⌋$

[Copy link]

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

hbghlyj Posted 2023-5-2 01:47 |Read mode
对$n\inN$如何证明$$\lfloor\sqrt{n}\rfloor+\lfloor\sqrt{4n+1}\rfloor = \lfloor\frac{3}{2} \lfloor \sqrt{4n+1} \rfloor\rfloor$$1,3,4,4,6,6,7,7,7,9,9,9,10,10,10,10,…

4

Threads

139

Posts

2198

Credits

Credits
2198

Show all posts

Aluminiumor Posted 2024-7-28 10:32
记 $k=\lfloor\sqrt{4n+1}\rfloor\in\mathbb{N}_{+}$
则 $$\sqrt{4n+1}-1< k\leq\sqrt{4n+1}\Longrightarrow k^2-1\leq4n<k^2+2k$$
注意到
$$\lfloor\frac{k}{2}\rfloor+k=\lfloor\frac{3k}{2}\rfloor$$
故只需证
$$\lfloor\sqrt{n}\rfloor=\lfloor\frac{k}{2}\rfloor$$
(1)若 $k$ 为偶数,$\lfloor\dfrac{k}{2}\rfloor=\dfrac{k}{2}$
$$\lfloor\sqrt{n}\rfloor=\frac k2\Longleftrightarrow \sqrt{n}-1<\frac k2\leq\sqrt{n}\Longleftrightarrow k^2\leq4n<(k+2)^2$$
注意此时 $k^2-1\leq4n\Longleftrightarrow k^2\leq4n$, 故得证。

(2)若 $k$ 为奇数,$\lfloor\dfrac{k}{2}\rfloor=\dfrac{k-1}{2}$
$$\lfloor\sqrt{n}\rfloor=\frac{k-1}{2}\Longleftrightarrow\sqrt{n}-1<\frac{k-1}{2}\leq\sqrt{n}\Longleftrightarrow k^2-2k+1\leq4n<(k+1)^2$$
得证.
Wir müssen wissen, wir werden wissen.

Mobile version|Discuz Math Forum

2025-6-5 07:52 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit