Forgot password?
 Register account
View 250|Reply 2

[不等式] 连续整数平方根取整的和

[Copy link]

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

hbghlyj Posted 2023-3-18 17:28 |Read mode
$\forall n\in\mathbb N,$
(1) $\lfloor\sqrt{n}+\sqrt{n+1}\rfloor=\lfloor\sqrt{4 n+1}\rfloor$
(2) $\lfloor\sqrt{n}+\sqrt{n+1}+\sqrt{n+2}\rfloor=\lfloor\sqrt{9 n+8}\rfloor$
(3) $\lfloor\sqrt{n}+\sqrt{n+1}+\sqrt{n+2}+\sqrt{n+3}\rfloor=\lfloor\sqrt{16 n+20}\rfloor$
(4) $\lfloor\sqrt{n}+\sqrt{n+1}+\sqrt{n+2}+\sqrt{n+3}+\sqrt{n+4}\rfloor=\lfloor\sqrt{25 n+49}\rfloor$

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

 Author| hbghlyj Posted 2023-3-18 17:31

(1)

对于每个正整数 $n$ 证明 $[\sqrt{4n + 1}] = [\sqrt{4n + 2}] = [\sqrt{4n + 3}] = [\sqrt{n} + \sqrt{n + 1}]$
显然 $[\sqrt{4n+1}] = [\sqrt{4n+2}] = [\sqrt{4n+3}]$ 因为整数的平方 $\equiv 0,1 \pmod{4} $。
因此我们需要证明 $[\sqrt{n} + \sqrt{n+1}] = [\sqrt{4n + 1}]$。
让 $k \le [\sqrt{n} + \sqrt{n+1}] < k + 1$。平方得:
$$k^{2} \le 2n + 1 + 2 \sqrt{n}\sqrt{n+1} < (k+1)^2$$
因为\begin{array}l
2n + 1 + 2 \sqrt{n}\sqrt{n+1} > 2n + 1 + 2 \sqrt{n}\sqrt{n} > 4n + 1\\
2n + 1 + 2 \sqrt{n}\sqrt{n+1} < 2n + 1 + 2 \sqrt{n+1}\sqrt{n+1} < 4n + 3\end{array}所以 $4n + 1 < 2n + 1 + 2 \sqrt{n}\sqrt{n+1} < 4n + 3$。
这意味着 $[\sqrt{4n + 1}] \le [\sqrt{n} + \sqrt{n+1}] \le [\sqrt{4n + 3}]$。
但是$[\sqrt{4n + 1}] = [\sqrt{4n + 3}]$,这样我们就证明了等式。

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

 Author| hbghlyj Posted 2023-3-18 17:36

Mobile version|Discuz Math Forum

2025-6-5 07:39 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit