Forgot password?
 Register account
View 379|Reply 4

[数论] $[k/a]$求和

[Copy link]

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

hbghlyj Posted 2023-4-28 02:44 |Read mode
Last edited by hbghlyj 2024-11-12 09:04证明 (i)
$$
\sum_{k=1}^n\left[\frac{k}{2}\right]=\left[\frac{n^2}{4}\right]
$$
(ii)
$$
\sum_{k=1}^n\left[\frac{k}{3}\right]=\left[\frac{n(n-1)}{6}\right]
$$
(iii) 对 $a=1,2, \ldots, 7$ 存在整数 $b$ (依赖于 $a$) 使得
$$
\sum_{k=1}^n\left[\frac{k}{a}\right]=\left[\frac{(2 n+b)^2}{8 a}\right]
$$

0

Threads

6

Posts

48

Credits

Credits
48

Show all posts

creasson Posted 2023-5-7 14:33
对任意的$a \in N^+$, 有
\[\sum\limits_{k = 1}^n {[\frac{k}{a}]}  = (n + 1 - \frac{a}{2})[\frac{n}{a}] - \frac{a}{2}{[\frac{n}{a}]^2}\]

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

 Author| hbghlyj Posted 2024-11-12 17:03
creasson 发表于 2023-5-7 06:33
对任意的$a \inN^+$, 有
\[\sum\limits_{k = 1}^n {[\frac{k}{a}]}  = (n + 1 - \frac{a}{2})[\frac{n}{a}] - \frac{a}{2}{[\frac{n}{a}]^2}\]
在网友的提示下,我想出了
artofproblemsolving.com/community/c7h1517678p33179546
\begin{multline*} \left((k-1) a-1+1-\frac{a}{2}\right)(k-2)-\frac{a}{2}(k-2)^2+(n-(k-1) a+1)(k-1)= \\ \left(n+1-\frac{a}{2}\right)(k-1)-\frac{a}{2}(k-1)^2\end{multline*}WolframAlpha验证:
wolframalpha.com/input?i=((k-1)a-1 + 1 - \fra … - \frac{a}{2}(k-1)^2

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

 Author| hbghlyj Posted 2024-11-12 17:13
但是这个公式如何解决原问题?$\sum_{k=1}^n\left[\frac{k}{a}\right]=\left[\frac{(2 n+b)^2}{8 a}\right]$

4

Threads

139

Posts

2198

Credits

Credits
2198

Show all posts

Aluminiumor Posted 2024-11-12 19:49
设 $m=\lfloor\frac na\rfloor$,$n=ma+r (0\leq r\leq a-1)$
由 2#
$$\sum_{k=1}^n\Big\lfloor\frac ka\Big\rfloor=\frac a2m^2+(r+1-\frac a2)m$$

$$\Big\lfloor\frac{(2n+b)^2}{8a}\Big\rfloor=\Big\lfloor\frac{(2ma+2r+b)^2}{8a}\Big\rfloor=\Big\lfloor\frac a2m^2+(r+\frac b2)m+\frac{(2r+b)^2}{8a}\Big\rfloor$$
取 $b=2-a$ 只需说明 $0\leq\frac{(2r+2-a)^2}{8a}<1$
而 $2-a\leq2r+2-a\leq a$ 易知 $a=1,2,\ldots7$ 满足。
Wir müssen wissen, wir werden wissen.

Mobile version|Discuz Math Forum

2025-6-5 18:54 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit