Forgot password?
 Register account
View 2780|Reply 9

[函数] 大家都来写关于取整函数的性质(常见的与不常见的)

[Copy link]

8

Threads

20

Posts

149

Credits

Credits
149

Show all posts

琉璃幻 Posted 2014-10-16 14:26 |Read mode
(1) $[x]\le x<[x]+1$

(2)若$x\le y$,则$[x]\le [y]$

(3)对于任意整数$m$都有$[x+m]=[x]+m$

(4)$\left[\frac{[x]}{m}\right]=\left[\frac{x}{m}\right]$

(5)对于任意实数$a,b$, $\{a+b\}=\{\{a\}+\{b\}\}$

(6)对于任意实数$a,b$有$[2a]+[2b]\ge [a]+[b]+[a+b]$

(7)对于任意实数$x,y$,$[x-y]\le [x]-[y]\le [x-y]+1$

(8)对于任意实数$x,y$ $\{x+y\}\le \{x\}+\{y\}$

(9)对于任意实数$x,y$ $[x+y]\ge [x]+[y]$

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2014-10-16 15:00
回复 1# 琉璃幻

懒得写,自己看吧
en.wikipedia.org/wiki/Floor_and_ceiling_functions

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2014-10-16 15:17
我写过一个取整函数的文档还没有公布。
都是题目。哈哈哈哈

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2014-10-16 15:33
回复 3# Tesla35

585题库

8

Threads

20

Posts

149

Credits

Credits
149

Show all posts

 Author| 琉璃幻 Posted 2014-10-17 08:47
回复 2# 战巡

才这么点哪里够。。。
    我是求大家把自己知道的都贴出来

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

realnumber Posted 2014-10-21 18:20
要不算上取整函数的一些习题?

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

realnumber Posted 2014-12-16 13:24
Last edited by realnumber 2014-12-16 13:31某一书看到的问题
[$\dfrac{n}{3}$]+[$\dfrac{n+2}{6}$]+[$\dfrac{n+4}{6}$]=[$\dfrac{n}{2}$]+[$\dfrac{n+3}{6}$]

对于$n\in N^+$,
有[$\dfrac{n+1}{2}$]+[$\dfrac{n+2}{4}$]+[$\dfrac{n+4}{8}$]+[$\dfrac{n+8}{16}$]+...$=n$

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2014-12-16 16:34
看第三小节。有大量习题
$type mainbook.pdf (158.04 KB, Downloads: 5405)

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

hbghlyj Posted 2024-10-24 02:55
Last edited by hbghlyj 2025-4-29 18:28
realnumber 发表于 2014-12-16 05:24
某一书看到的问题
对于 (i),令$n=6k+r$,其中 $r\in \{0,1,...,5\}$。那么左边是
$$\begin{eqnarray}
\Big[{n\over 3}\Big]+ \Big[{n+2\over 6}\Big]+\Big[{n+4\over 6}\Big] &= &\Big[{6k+r\over 3}\Big]+ \Big[{6k+r+2\over 6}\Big]+\Big[{6k+r+4\over 6}\Big]\\
&= &2k+\Big[{r\over 3}\Big]+ k+\Big[{r+2\over 6}\Big]+k+\Big[{r+4\over 6}\Big]\\
&= &4k+\underbrace{\Big[{r\over 3}\Big]+\Big[{r+2\over 6}\Big]+\Big[{r+4\over 6}\Big]}_{E_r}\\
\end{eqnarray}$$
$$E_r=\left\{%
\begin{array}{ll}
    0, & r=0,1\\
    1, & r=2 \\
2, & r=3 \\
3, & r=4,5 \\
\end{array}%
\right.$$
右边是
$$\begin{eqnarray}
\Big[{n\over 2}\Big]+ \Big[{n+3\over 6}\Big]&= &\Big[{6k+r\over 2}\Big]+ \Big[{6k+r+3\over 6}\Big]\\
&= &3k+\Big[{r\over 2}\Big]+ k+\Big[{r+3\over 6}\Big]\\
&= &4k+\underbrace{\Big[{r\over 2}\Big]+\Big[{r+3\over 6}\Big]}_{F_r}\\
\end{eqnarray}$$
$$F_r=\left\{%
\begin{array}{ll}
    0, & r=0,1\\
    1, & r=2 \\
2, & r=3 \\
3, & r=4,5 \\
\end{array}%
\right.$$
所以对于所有 $r$,两边都是相同的。

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

hbghlyj Posted 2024-10-24 04:21
realnumber 发表于 2014-12-16 05:24
对于$n\inN^+$,有$$\left[\dfrac{n+1}{2}\right]+\left[\dfrac{n+2}{4}\right]+\left[\dfrac{n+4}{8}\right]+\left[\dfrac{n+8}{16}\right] + \dots=n$$
提示:使用恒等式 $[x]=\left[\dfrac x2\right]+\left[\dfrac{x+1}{2}\right]$
$$\left[\frac{n+1}{2}\right]=[n]-\left[\frac n2\right]$$
$$\left[\frac{n+2}{4}\right]=\left[\frac{n}{2}\right] - \left[\frac{n}{4}\right]$$
$$\left[\frac{n+4}{8}\right]=\left[\frac{n}{4}\right] - \left[\frac{n}{8}\right]$$

Mobile version|Discuz Math Forum

2025-6-5 18:21 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit